DMGNN 项目使用教程
2024-09-26 08:30:44作者:蔡丛锟
1. 项目目录结构及介绍
DMGNN/
├── cmu-long/
├── cmu-short/
├── config/
│ ├── CMU/
│ │ ├── short/
│ │ │ ├── train.yaml
│ │ │ └── test.yaml
│ └── H36M/
│ ├── short/
│ │ ├── train.yaml
│ │ └── test.yaml
├── data/
├── h36m-long/
├── h36m-short/
├── img/
├── torchlight/
│ └── setup.py
├── .gitignore
├── LICENSE
├── README.md
└── main.py
目录结构说明
- cmu-long/ 和 cmu-short/:包含用于CMU Mocap数据集的训练和测试代码。
- config/:包含项目的配置文件,分为CMU和H36M两个数据集的配置。
- data/:用于存放数据集的目录。
- h36m-long/ 和 h36m-short/:包含用于Human3.6M数据集的训练和测试代码。
- img/:存放项目相关的图像文件。
- torchlight/:包含项目依赖的torchlight库的安装脚本。
- .gitignore:Git忽略文件配置。
- LICENSE:项目许可证文件。
- README.md:项目说明文档。
- main.py:项目的启动文件。
2. 项目启动文件介绍
main.py
main.py 是DMGNN项目的主要启动文件,用于训练和测试模型。它支持不同的任务,如短期预测和长期预测,并且可以通过配置文件进行参数调整。
使用示例
# 训练模型
python main.py prediction -c config/CMU/short/train.yaml
# 测试模型
python main.py prediction -c config/CMU/short/test.yaml
3. 项目配置文件介绍
config/ 目录
config/ 目录下包含多个配置文件,用于定义训练和测试的参数。每个数据集(如CMU和H36M)都有对应的配置文件。
配置文件示例
# config/CMU/short/train.yaml
# 训练参数
batch_size: 64
learning_rate: 0.001
epochs: 100
# 数据路径
data_path: "data/CMU/short/"
# 其他参数
...
配置文件说明
- batch_size:批处理大小。
- learning_rate:学习率。
- epochs:训练轮数。
- data_path:数据集路径。
通过修改这些配置文件,可以调整模型的训练和测试行为。
以上是DMGNN项目的使用教程,涵盖了项目的目录结构、启动文件和配置文件的详细介绍。希望这些信息能帮助你更好地理解和使用该项目。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
WebVideoDownloader:高效网页视频抓取工具全面使用指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
291
2.62 K
Ascend Extension for PyTorch
Python
123
149
暂无简介
Dart
583
127
React Native鸿蒙化仓库
JavaScript
227
306
仓颉编译器源码及 cjdb 调试工具。
C++
121
388
仓颉编程语言运行时与标准库。
Cangjie
130
401
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
610
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
185
openGauss kernel ~ openGauss is an open source relational database management system
C++
155
205