Craftium项目入门指南:构建随机智能体与环境交互
2025-06-29 07:52:44作者:董宙帆
前言
Craftium是一个基于Gymnasium API的强化学习环境创建框架,特别适合用于构建和测试3D环境中的智能体。本文将带您快速上手Craftium,通过实现一个随机动作智能体来熟悉基本操作流程。
环境准备
在开始之前,请确保已完成Craftium的安装。我们需要导入以下Python包:
import matplotlib.pyplot as plt
import numpy as np
import gymnasium as gym
import craftium
这些包分别用于:
- 可视化环境观测(matplotlib)
- 数据处理(numpy)
- 强化学习环境接口(gymnasium)
- Craftium核心功能
创建第一个环境
Craftium提供了多个预设环境,本文以"ChopTree-v0"为例,这是一个需要智能体学习砍树任务的环境。
通过Gymnasium的标准接口创建环境:
env = gym.make("Craftium/ChopTree-v0")
这里使用了Gymnasium的make方法,前缀"Craftium/"表示这是Craftium注册的环境。
实现智能体交互循环
下面展示一个基本的随机智能体交互流程:
# 初始化环境
observation, info = env.reset()
# 运行20个时间步
for t in range(20):
# 从动作空间中随机采样一个动作
action = env.action_space.sample()
# 可视化当前观测
plt.clf()
plt.imshow(np.transpose(observation, (1, 0, 2)))
plt.pause(0.02) # 暂停0.02秒
# 执行动作并获取反馈
observation, reward, terminated, truncated, _info = env.step(action)
# 检查是否结束
if terminated or truncated:
observation, info = env.reset()
# 关闭环境
env.close()
这段代码展示了强化学习的标准交互模式:
- 重置环境获取初始状态
- 在循环中:
- 选择动作(此处随机选择)
- 可视化当前状态
- 执行动作
- 检查终止条件
- 结束时清理资源
直接使用CraftiumEnv
除了通过Gymnasium接口,也可以直接使用Craftium的核心类:
from craftium import CraftiumEnv
env = CraftiumEnv(
env_dir="path/to/env-dir",
render_mode="human",
obs_width=512,
obs_height=512,
)
关键参数说明:
env_dir: 环境数据目录路径(必需)render_mode: 渲染模式,如"human"表示可视化obs_width/obs_height: 观测图像的尺寸(像素)
观测与动作空间
Craftium的观测空间默认提供RGB图像,动作空间则包含移动、旋转、交互等多种动作类型。对于更复杂的任务,可以自定义这些空间。
进阶学习建议
掌握基础后,您可以:
- 尝试修改环境参数观察不同效果
- 实现简单的规则智能体替代随机动作
- 探索Craftium提供的其他预设环境
- 学习如何创建自定义环境
结语
本文介绍了Craftium的基本使用方法,通过构建随机智能体帮助您快速上手。Craftium的强大之处在于其灵活的环境定制能力,后续可以深入探索其高级功能,构建更复杂的强化学习实验。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
646
149
Ascend Extension for PyTorch
Python
207
220
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
653
286
React Native鸿蒙化仓库
JavaScript
250
318
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.13 K
637
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
78
101
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
仓颉编程语言运行时与标准库。
Cangjie
134
873