Craftium项目入门指南:构建随机智能体与环境交互
2025-06-29 20:16:51作者:董宙帆
前言
Craftium是一个基于Gymnasium API的强化学习环境创建框架,特别适合用于构建和测试3D环境中的智能体。本文将带您快速上手Craftium,通过实现一个随机动作智能体来熟悉基本操作流程。
环境准备
在开始之前,请确保已完成Craftium的安装。我们需要导入以下Python包:
import matplotlib.pyplot as plt
import numpy as np
import gymnasium as gym
import craftium
这些包分别用于:
- 可视化环境观测(matplotlib)
- 数据处理(numpy)
- 强化学习环境接口(gymnasium)
- Craftium核心功能
创建第一个环境
Craftium提供了多个预设环境,本文以"ChopTree-v0"为例,这是一个需要智能体学习砍树任务的环境。
通过Gymnasium的标准接口创建环境:
env = gym.make("Craftium/ChopTree-v0")
这里使用了Gymnasium的make方法,前缀"Craftium/"表示这是Craftium注册的环境。
实现智能体交互循环
下面展示一个基本的随机智能体交互流程:
# 初始化环境
observation, info = env.reset()
# 运行20个时间步
for t in range(20):
# 从动作空间中随机采样一个动作
action = env.action_space.sample()
# 可视化当前观测
plt.clf()
plt.imshow(np.transpose(observation, (1, 0, 2)))
plt.pause(0.02) # 暂停0.02秒
# 执行动作并获取反馈
observation, reward, terminated, truncated, _info = env.step(action)
# 检查是否结束
if terminated or truncated:
observation, info = env.reset()
# 关闭环境
env.close()
这段代码展示了强化学习的标准交互模式:
- 重置环境获取初始状态
- 在循环中:
- 选择动作(此处随机选择)
- 可视化当前状态
- 执行动作
- 检查终止条件
- 结束时清理资源
直接使用CraftiumEnv
除了通过Gymnasium接口,也可以直接使用Craftium的核心类:
from craftium import CraftiumEnv
env = CraftiumEnv(
env_dir="path/to/env-dir",
render_mode="human",
obs_width=512,
obs_height=512,
)
关键参数说明:
env_dir: 环境数据目录路径(必需)render_mode: 渲染模式,如"human"表示可视化obs_width/obs_height: 观测图像的尺寸(像素)
观测与动作空间
Craftium的观测空间默认提供RGB图像,动作空间则包含移动、旋转、交互等多种动作类型。对于更复杂的任务,可以自定义这些空间。
进阶学习建议
掌握基础后,您可以:
- 尝试修改环境参数观察不同效果
- 实现简单的规则智能体替代随机动作
- 探索Craftium提供的其他预设环境
- 学习如何创建自定义环境
结语
本文介绍了Craftium的基本使用方法,通过构建随机智能体帮助您快速上手。Craftium的强大之处在于其灵活的环境定制能力,后续可以深入探索其高级功能,构建更复杂的强化学习实验。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
369
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
674
Ascend Extension for PyTorch
Python
242
279
React Native鸿蒙化仓库
JavaScript
270
328