MaaFramework v4.0.0-beta.4 技术解析与更新亮点
MaaFramework 是一个开源的自动化框架,专注于为移动设备和桌面平台提供高效的自动化解决方案。它支持多种平台架构,包括 Android、Linux、macOS 和 Windows 等,广泛应用于游戏自动化、测试自动化等领域。本次发布的 v4.0.0-beta.4 版本带来了多项重要更新和优化。
核心架构变更
本次版本最显著的变化是移除了 arm64-win 架构的构建支持,暂时替换为 x64-win 架构包。这一调整是由于持续集成流程中的构建故障导致的临时解决方案,开发团队表示将在后续版本中重新引入对 arm64-win 架构的支持。
新增功能亮点
MaaAgent 功能引入
框架新增了 MaaAgent 功能,这是一个重要的架构扩展。MaaAgent 为框架提供了更灵活的代理机制,使得开发者能够更好地控制和扩展自动化流程。这一功能的加入为未来可能的多设备协同、分布式自动化等高级场景奠定了基础。
图像处理优化
本次更新对图像传输机制进行了重构,显著提升了性能表现。优化后的图像处理流程减少了内存拷贝和数据传输开销,对于依赖图像识别的自动化任务将带来明显的速度提升。特别是在高频图像处理场景下,如实时游戏画面分析,这一改进将大幅降低延迟。
OCR 功能增强
在管道 OCR 功能中新增了 threshold 字段,为开发者提供了更精细的图像识别控制能力。通过调整阈值参数,可以针对不同光照条件、图像质量的场景优化识别准确率,这在自动化测试和游戏辅助等应用中尤为重要。
问题修复与稳定性提升
修复了 context.run_action 无法获取识别详情的问题,这一修复确保了动作执行后能够正确返回识别结果,为调试和日志记录提供了更完整的信息。同时,NodeJS 构造错误的问题也得到了解决,提高了 JavaScript 绑定的稳定性。
开发者体验改进
Python 绑定方面进行了多项优化,包括完善 Win32Controller 的类型注释,调整 AlgorithmEnum 的继承方式等。这些改进使得 Python 开发者能够获得更好的代码提示和类型检查支持,提升了开发效率。
文档与最佳实践
文档部分新增了多个最佳实践案例,包括 MaaXuexi、MACC 和 MAA_MHXY_MG 等项目。这些案例为开发者提供了实际应用参考,展示了框架在不同场景下的应用方式和最佳实践,有助于新用户快速上手和现有用户优化自己的实现。
跨平台支持
框架继续保持对多平台的良好支持,包括:
- Android (aarch64/x86_64)
- Linux (aarch64/x86_64)
- macOS (aarch64/x86_64)
- Windows (aarch64/x86_64)
每个平台都提供了预编译的二进制包,方便开发者直接集成使用。
总结
MaaFramework v4.0.0-beta.4 版本在性能、功能和开发者体验方面都有显著提升。图像处理优化和 OCR 增强直接提升了核心自动化能力,而 MaaAgent 的引入则为框架未来的扩展性打下了基础。虽然 arm64-win 支持暂时回退,但团队已明确表示这是临时措施。对于自动化开发者和研究人员来说,这个版本值得关注和尝试。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00