Snap! v10.5.0 版本发布:移动设备传感器支持与媒体处理增强
项目简介
Snap! 是一款基于浏览器的可视化编程语言和环境,源自于麻省理工学院的Scratch项目,但提供了更强大的功能和灵活性。它采用积木式编程界面,特别适合教育场景中教授编程概念。Snap! 不仅面向儿童和初学者,也为高级用户提供了丰富的扩展功能。
核心更新内容
1. 移动设备传感器支持
本次版本最引人注目的新增功能是"Mobile Device Sensors"(移动设备传感器)库,其中包含了一个名为"tilt"(倾斜)的监测器。这个功能允许开发者通过编程访问移动设备的加速度传感器数据,为创建交互式移动应用开辟了新的可能性。
技术实现上,Snap! 团队新增了"ori_tilt(xyz)"扩展块,它可以报告设备在x、y、z三个轴向上的倾斜角度。这对于开发需要物理交互的游戏和教育应用特别有价值,例如:
- 平衡球类游戏
- 物理模拟实验
- 增强现实(AR)应用原型
2. 音频处理增强
针对媒体扩展开发者,v10.5.0引入了"mda_set_mic_resolution(idx)"扩展块,允许程序化设置音频缓冲区大小。这个功能提供了四种分辨率选项:
- 256采样点
- 512采样点
- 1024采样点
- 2048采样点
值得注意的是,团队特别修复了Safari浏览器(包括Mac和移动版本)中的声音录制问题,这解决了长期困扰开发者的跨浏览器兼容性问题。
3. 图像处理改进
在图像处理方面,本次更新对两个关键功能进行了优化:
STRETCH COSTUME功能增强: 现在不仅支持调整精灵外观的大小,还能接受像素数据矩阵作为输入,并相应地输出处理后的矩阵数据。这一变化虽然主要面向教育工作者和课程开发者,但为高级用户提供了更大的灵活性。
RESHAPE功能调整: 修改了处理分数维度时的舍入策略,现在会使用向上取整(ceiling)的方式。例如,输入尺寸为2.3×4.6时,系统会自动调整为3×5。这一变化使图像处理结果更加可预测,减少了意外裁剪的可能性。
技术意义与应用前景
从技术架构角度看,v10.5.0的更新体现了Snap!项目在两个方向上的战略发展:
-
移动优先策略:通过引入设备传感器支持,Snap!正在拓展其在移动设备上的应用场景,不再局限于传统的桌面浏览器环境。
-
专业功能下沉:虽然Snap!主要面向教育市场,但通过提供音频缓冲区设置和高级图像处理能力,它正在吸引更多专业开发者的关注,成为原型开发和教育演示的有力工具。
对于教育工作者而言,新的传感器功能特别值得关注。它使得在课堂上演示物理概念(如加速度、重力等)变得更加直观,学生可以通过自己编写的程序直接与物理世界互动,这种"具身学习"体验能显著提升STEM教育的效果。
总结
Snap! v10.5.0版本通过引入移动设备传感器支持和增强媒体处理能力,进一步模糊了教育工具和专业开发环境之间的界限。这些更新不仅丰富了平台的功能集,也扩展了其在STEAM教育中的应用场景。特别是倾斜传感器的加入,为创造更具互动性的学习体验提供了新的可能性,预示着可视化编程工具向物理计算和物联网领域延伸的趋势。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00