Snap! v10.5.0 版本发布:移动设备传感器支持与媒体处理增强
项目简介
Snap! 是一款基于浏览器的可视化编程语言和环境,源自于麻省理工学院的Scratch项目,但提供了更强大的功能和灵活性。它采用积木式编程界面,特别适合教育场景中教授编程概念。Snap! 不仅面向儿童和初学者,也为高级用户提供了丰富的扩展功能。
核心更新内容
1. 移动设备传感器支持
本次版本最引人注目的新增功能是"Mobile Device Sensors"(移动设备传感器)库,其中包含了一个名为"tilt"(倾斜)的监测器。这个功能允许开发者通过编程访问移动设备的加速度传感器数据,为创建交互式移动应用开辟了新的可能性。
技术实现上,Snap! 团队新增了"ori_tilt(xyz)"扩展块,它可以报告设备在x、y、z三个轴向上的倾斜角度。这对于开发需要物理交互的游戏和教育应用特别有价值,例如:
- 平衡球类游戏
- 物理模拟实验
- 增强现实(AR)应用原型
2. 音频处理增强
针对媒体扩展开发者,v10.5.0引入了"mda_set_mic_resolution(idx)"扩展块,允许程序化设置音频缓冲区大小。这个功能提供了四种分辨率选项:
- 256采样点
- 512采样点
- 1024采样点
- 2048采样点
值得注意的是,团队特别修复了Safari浏览器(包括Mac和移动版本)中的声音录制问题,这解决了长期困扰开发者的跨浏览器兼容性问题。
3. 图像处理改进
在图像处理方面,本次更新对两个关键功能进行了优化:
STRETCH COSTUME功能增强: 现在不仅支持调整精灵外观的大小,还能接受像素数据矩阵作为输入,并相应地输出处理后的矩阵数据。这一变化虽然主要面向教育工作者和课程开发者,但为高级用户提供了更大的灵活性。
RESHAPE功能调整: 修改了处理分数维度时的舍入策略,现在会使用向上取整(ceiling)的方式。例如,输入尺寸为2.3×4.6时,系统会自动调整为3×5。这一变化使图像处理结果更加可预测,减少了意外裁剪的可能性。
技术意义与应用前景
从技术架构角度看,v10.5.0的更新体现了Snap!项目在两个方向上的战略发展:
-
移动优先策略:通过引入设备传感器支持,Snap!正在拓展其在移动设备上的应用场景,不再局限于传统的桌面浏览器环境。
-
专业功能下沉:虽然Snap!主要面向教育市场,但通过提供音频缓冲区设置和高级图像处理能力,它正在吸引更多专业开发者的关注,成为原型开发和教育演示的有力工具。
对于教育工作者而言,新的传感器功能特别值得关注。它使得在课堂上演示物理概念(如加速度、重力等)变得更加直观,学生可以通过自己编写的程序直接与物理世界互动,这种"具身学习"体验能显著提升STEM教育的效果。
总结
Snap! v10.5.0版本通过引入移动设备传感器支持和增强媒体处理能力,进一步模糊了教育工具和专业开发环境之间的界限。这些更新不仅丰富了平台的功能集,也扩展了其在STEAM教育中的应用场景。特别是倾斜传感器的加入,为创造更具互动性的学习体验提供了新的可能性,预示着可视化编程工具向物理计算和物联网领域延伸的趋势。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00