LMDeploy多GPU并行推理中的显存分配不均问题分析与解决
2025-06-03 03:29:53作者:魏献源Searcher
问题现象
在使用LMDeploy部署Qwen2.5-72B-Instruct-AWQ等大模型进行多GPU并行推理时,发现不同GPU间的显存占用存在明显差异。具体表现为:当使用4个GPU(TP=4)时,GPU3的显存占用达到23608MiB,而其他GPU(0,1,2)的显存占用仅为20426MiB左右。这种现象在Qwen2.5-7B等不同规模的模型上也同样存在。
技术背景
在大型语言模型的多GPU并行推理中,Tensor Parallelism(张量并行)是一种常见的并行策略。它将模型的参数和计算负载分配到多个GPU上,理论上应该实现各GPU间的负载均衡。然而,实际部署中可能会出现显存分配不均的情况,这通常与以下几个因素有关:
- 模型切分策略:不同的模型层可能有不同的参数规模,导致分配到各GPU上的参数不均衡
- KV缓存管理:推理过程中的键值缓存(KV Cache)分配可能不均匀
- 系统级因素:GPU间的通信开销、PCIe拓扑结构等
问题分析
经过深入排查,发现问题根源在于模型转换过程中的显存管理。具体表现为:
- 当直接使用
lmdeploy serve api_server命令启动服务并同时进行模型转换时,转换过程中的临时显存分配没有被及时释放 - 这种显存泄漏主要影响最后一个GPU(GPU3),导致其显存占用明显高于其他GPU
- 这种问题在AWQ量化模型上尤为明显,因为量化过程本身就需要额外的显存开销
解决方案
针对这一问题,推荐采用以下最佳实践:
- 分离模型转换和推理过程:先使用
lmdeploy convert命令将模型转换为TurboMind格式,再启动推理服务 - 显式释放资源:在模型转换完成后,显式调用显存释放操作
- 监控显存使用:在服务启动后,使用
nvidia-smi等工具监控各GPU显存使用情况
具体操作步骤如下:
# 第一步:单独执行模型转换
lmdeploy convert Qwen/Qwen2.5-72B-Instruct-AWQ \
--quant-policy 0 \
--model-format awq \
--tp 4
# 第二步:启动推理服务
lmdeploy serve api_server ./workspace \
--server-name 0.0.0.0 \
--server-port 23332 \
--cache-max-entry-count 0.8 \
--tp 4
技术建议
对于大规模模型的多GPU部署,还应注意以下几点:
- 硬件拓扑考虑:确保GPU间有良好的互联带宽(如使用NVLink连接)
- 负载均衡监控:持续监控各GPU的计算负载和显存使用
- 分批处理策略:对于流式请求,采用合理的批处理大小以避免显存峰值
- 量化策略选择:根据硬件条件选择合适的量化方式(AWQ/GPTQ等)
总结
LMDeploy作为高效的推理部署工具,在大模型服务化方面表现出色。通过理解其底层工作机制并遵循正确的使用流程,可以有效避免显存分配不均等问题。特别是在处理超大规模模型时,预先转换模型格式、合理规划资源分配,是保证服务稳定性的关键。
对于生产环境部署,建议在模型转换阶段就充分考虑目标硬件的特性,并通过压力测试验证各GPU的资源使用均衡性,从而确保服务的最佳性能和稳定性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355