LMDeploy多GPU并行推理中的显存分配不均问题分析与解决
2025-06-03 04:55:56作者:魏献源Searcher
问题现象
在使用LMDeploy部署Qwen2.5-72B-Instruct-AWQ等大模型进行多GPU并行推理时,发现不同GPU间的显存占用存在明显差异。具体表现为:当使用4个GPU(TP=4)时,GPU3的显存占用达到23608MiB,而其他GPU(0,1,2)的显存占用仅为20426MiB左右。这种现象在Qwen2.5-7B等不同规模的模型上也同样存在。
技术背景
在大型语言模型的多GPU并行推理中,Tensor Parallelism(张量并行)是一种常见的并行策略。它将模型的参数和计算负载分配到多个GPU上,理论上应该实现各GPU间的负载均衡。然而,实际部署中可能会出现显存分配不均的情况,这通常与以下几个因素有关:
- 模型切分策略:不同的模型层可能有不同的参数规模,导致分配到各GPU上的参数不均衡
- KV缓存管理:推理过程中的键值缓存(KV Cache)分配可能不均匀
- 系统级因素:GPU间的通信开销、PCIe拓扑结构等
问题分析
经过深入排查,发现问题根源在于模型转换过程中的显存管理。具体表现为:
- 当直接使用
lmdeploy serve api_server
命令启动服务并同时进行模型转换时,转换过程中的临时显存分配没有被及时释放 - 这种显存泄漏主要影响最后一个GPU(GPU3),导致其显存占用明显高于其他GPU
- 这种问题在AWQ量化模型上尤为明显,因为量化过程本身就需要额外的显存开销
解决方案
针对这一问题,推荐采用以下最佳实践:
- 分离模型转换和推理过程:先使用
lmdeploy convert
命令将模型转换为TurboMind格式,再启动推理服务 - 显式释放资源:在模型转换完成后,显式调用显存释放操作
- 监控显存使用:在服务启动后,使用
nvidia-smi
等工具监控各GPU显存使用情况
具体操作步骤如下:
# 第一步:单独执行模型转换
lmdeploy convert Qwen/Qwen2.5-72B-Instruct-AWQ \
--quant-policy 0 \
--model-format awq \
--tp 4
# 第二步:启动推理服务
lmdeploy serve api_server ./workspace \
--server-name 0.0.0.0 \
--server-port 23332 \
--cache-max-entry-count 0.8 \
--tp 4
技术建议
对于大规模模型的多GPU部署,还应注意以下几点:
- 硬件拓扑考虑:确保GPU间有良好的互联带宽(如使用NVLink连接)
- 负载均衡监控:持续监控各GPU的计算负载和显存使用
- 分批处理策略:对于流式请求,采用合理的批处理大小以避免显存峰值
- 量化策略选择:根据硬件条件选择合适的量化方式(AWQ/GPTQ等)
总结
LMDeploy作为高效的推理部署工具,在大模型服务化方面表现出色。通过理解其底层工作机制并遵循正确的使用流程,可以有效避免显存分配不均等问题。特别是在处理超大规模模型时,预先转换模型格式、合理规划资源分配,是保证服务稳定性的关键。
对于生产环境部署,建议在模型转换阶段就充分考虑目标硬件的特性,并通过压力测试验证各GPU的资源使用均衡性,从而确保服务的最佳性能和稳定性。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0362Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++090Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
192
2.15 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
78
72

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
969
572

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
547
76

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
349
1.35 K

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

React Native鸿蒙化仓库
C++
205
284

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
17