LMDeploy多GPU并行推理中的显存分配不均问题分析与解决
2025-06-03 04:17:00作者:魏献源Searcher
问题现象
在使用LMDeploy部署Qwen2.5-72B-Instruct-AWQ等大模型进行多GPU并行推理时,发现不同GPU间的显存占用存在明显差异。具体表现为:当使用4个GPU(TP=4)时,GPU3的显存占用达到23608MiB,而其他GPU(0,1,2)的显存占用仅为20426MiB左右。这种现象在Qwen2.5-7B等不同规模的模型上也同样存在。
技术背景
在大型语言模型的多GPU并行推理中,Tensor Parallelism(张量并行)是一种常见的并行策略。它将模型的参数和计算负载分配到多个GPU上,理论上应该实现各GPU间的负载均衡。然而,实际部署中可能会出现显存分配不均的情况,这通常与以下几个因素有关:
- 模型切分策略:不同的模型层可能有不同的参数规模,导致分配到各GPU上的参数不均衡
- KV缓存管理:推理过程中的键值缓存(KV Cache)分配可能不均匀
- 系统级因素:GPU间的通信开销、PCIe拓扑结构等
问题分析
经过深入排查,发现问题根源在于模型转换过程中的显存管理。具体表现为:
- 当直接使用
lmdeploy serve api_server命令启动服务并同时进行模型转换时,转换过程中的临时显存分配没有被及时释放 - 这种显存泄漏主要影响最后一个GPU(GPU3),导致其显存占用明显高于其他GPU
- 这种问题在AWQ量化模型上尤为明显,因为量化过程本身就需要额外的显存开销
解决方案
针对这一问题,推荐采用以下最佳实践:
- 分离模型转换和推理过程:先使用
lmdeploy convert命令将模型转换为TurboMind格式,再启动推理服务 - 显式释放资源:在模型转换完成后,显式调用显存释放操作
- 监控显存使用:在服务启动后,使用
nvidia-smi等工具监控各GPU显存使用情况
具体操作步骤如下:
# 第一步:单独执行模型转换
lmdeploy convert Qwen/Qwen2.5-72B-Instruct-AWQ \
--quant-policy 0 \
--model-format awq \
--tp 4
# 第二步:启动推理服务
lmdeploy serve api_server ./workspace \
--server-name 0.0.0.0 \
--server-port 23332 \
--cache-max-entry-count 0.8 \
--tp 4
技术建议
对于大规模模型的多GPU部署,还应注意以下几点:
- 硬件拓扑考虑:确保GPU间有良好的互联带宽(如使用NVLink连接)
- 负载均衡监控:持续监控各GPU的计算负载和显存使用
- 分批处理策略:对于流式请求,采用合理的批处理大小以避免显存峰值
- 量化策略选择:根据硬件条件选择合适的量化方式(AWQ/GPTQ等)
总结
LMDeploy作为高效的推理部署工具,在大模型服务化方面表现出色。通过理解其底层工作机制并遵循正确的使用流程,可以有效避免显存分配不均等问题。特别是在处理超大规模模型时,预先转换模型格式、合理规划资源分配,是保证服务稳定性的关键。
对于生产环境部署,建议在模型转换阶段就充分考虑目标硬件的特性,并通过压力测试验证各GPU的资源使用均衡性,从而确保服务的最佳性能和稳定性。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137