如何在LLRT项目中直接使用原生JavaScript运行Lambda函数
LLRT是一个由AWS实验室开发的高性能JavaScript运行时环境,专为Lambda函数优化设计。本文将详细介绍如何在不依赖构建工具(如esbuild)的情况下,直接使用原生JavaScript代码在LLRT环境中运行AWS Lambda函数。
环境准备
首先需要获取对应平台的LLRT运行时文件。根据您的Lambda运行环境架构(arm64或x86_64),从项目发布页面下载相应的ZIP包。该ZIP包中包含了一个名为"bootstrap"的关键可执行文件,这是LLRT运行时的核心组件。
部署配置
部署LLRT运行Lambda函数需要以下步骤:
-
创建一个包含两个文件的部署包:
- 您的JavaScript代码文件(如index.js)
- 从LLRT ZIP包中提取的bootstrap文件
-
将这两个文件一起压缩为一个新的ZIP包
-
在AWS Lambda控制台中:
- 选择"Amazon Linux 2023"作为运行时环境
- 上传您创建的ZIP包
- 确保函数配置中的处理器架构(arm64/x86_64)与下载的LLRT版本匹配
代码编写注意事项
当为LLRT编写原生JavaScript代码时,需要注意以下几点:
-
使用CommonJS模块系统(require/exports),这是LLRT当前支持的主要模块系统
-
避免依赖Node.js特有的API,LLRT实现了大部分常用API但并非全部
-
对于AWS服务调用,可以直接使用AWS SDK for JavaScript
-
入口函数应遵循Lambda标准格式:
exports.handler = async function(event, context) {
// 您的处理逻辑
return response;
}
性能测试建议
要测试LLRT对性能的影响,可以:
-
准备一个简单的基准测试函数,如计算斐波那契数列
-
分别使用Node.js运行时和LLRT运行时运行相同代码
-
比较冷启动时间和热执行时间的差异
-
对于网络密集型操作,测试与DynamoDB等AWS服务的交互性能
常见问题解决
如果在迁移现有Node.js代码到LLRT时遇到问题,可以检查:
-
是否使用了LLRT尚未支持的Node.js API
-
模块导入方式是否正确
-
运行时环境是否配置正确
-
处理器架构是否匹配
通过以上步骤,开发者可以在不依赖复杂构建工具的情况下,直接使用原生JavaScript代码体验LLRT带来的性能优势。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00