DuckDB与PyArrow在S3查询性能上的对比分析
2025-05-06 22:50:41作者:魏献源Searcher
概述
在数据分析领域,DuckDB和PyArrow都是广受欢迎的工具。本文通过一个实际案例,对比分析了这两种工具在查询S3存储的Parquet文件时的性能差异。案例中,用户发现DuckDB的查询速度比PyArrow慢了约10倍,这引发了我们对两种工具内部工作机制的深入探讨。
测试环境与数据
测试使用了存储在S3上的地理Parquet文件,采用Hive分区方式组织(按年/月/日分区)。数据集总大小约28GB,包含63个文件,其中最大的单个文件约1.8GB。数据按device_id排序,测试查询特定日期和设备ID的记录。
查询性能对比
测试查询的基本形式为:
SELECT *
FROM dataset
WHERE year = 2025 AND
month = 1 AND
day = 1 AND
device_id IN (设备ID列表) AND
mmsi IN (MMSI列表)
PyArrow实现使用了箭头计算表达式:
filter = (
(pc.field('year') == 2025) &
(pc.field('month') == 1) &
(pc.field('day') == 1) &
(pc.field('device_id').isin(hashed_ids)) &
(pc.field('mmsi').isin(mmsis))
)
测试结果显示:
- PyArrow查询耗时约2.5秒
- DuckDB查询耗时约35秒
性能差异原因分析
通过日志分析发现,虽然两者都读取相同的4个Parquet文件,但DuckDB存在以下问题:
-
重复读取问题:DuckDB会多次读取相同的字节范围,这在处理大文件(如1.8GB的文件)时尤为明显。
-
查询优化差异:PyArrow的过滤实现可能更高效地利用了Parquet文件的统计信息和索引。
-
S3访问模式:DuckDB的S3客户端实现可能没有PyArrow优化得好,导致更多的网络请求。
解决方案与优化
开发团队提出了几个可能的优化方向:
-
使用IN替代ANY:虽然测试显示性能提升有限,但在某些场景下可能有效。
-
等待修复补丁:开发团队已经识别到问题并提交了修复补丁(PR #16224)。
-
配置调整:可能需要调整DuckDB的并行度和内存设置以获得更好的性能。
结论
对于S3上的Parquet文件查询,PyArrow在当前测试中表现出明显优势。DuckDB团队正在积极解决性能问题,用户可以考虑:
- 对于性能敏感的应用,暂时使用PyArrow
- 关注DuckDB的更新,特别是针对S3查询的优化
- 根据具体场景进行性能测试,选择最适合的工具
随着DuckDB的持续发展,预期其在云存储查询性能方面会有显著提升,为用户提供更多选择。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
137