Awesome LLM JSON 项目教程
2026-01-20 02:32:35作者:胡唯隽
1. 项目介绍
Awesome LLM JSON 是一个专注于使用大型语言模型(LLMs)生成 JSON 或其他结构化输出的资源列表。该项目旨在为开发者提供丰富的工具、库、模型和教程,帮助他们利用 LLMs 高效生成和处理结构化数据。
2. 项目快速启动
2.1 克隆项目
首先,克隆 awesome-llm-json 项目到本地:
git clone https://github.com/imaurer/awesome-llm-json.git
cd awesome-llm-json
2.2 安装依赖
项目中可能包含一些 Python 库,可以通过以下命令安装:
pip install -r requirements.txt
2.3 运行示例代码
项目中提供了一些示例代码,可以帮助你快速上手。以下是一个简单的示例,展示如何使用 LLM 生成 JSON 数据:
from llm_json_generator import generate_json
# 定义输入提示
prompt = "生成一个包含用户信息的 JSON 数据"
# 调用生成函数
json_output = generate_json(prompt)
# 输出结果
print(json_output)
3. 应用案例和最佳实践
3.1 数据提取
使用 LLMs 可以从非结构化文本中提取结构化数据。例如,从一篇新闻文章中提取关键信息并生成 JSON 格式的数据。
from llm_json_generator import extract_structured_data
text = "2023年10月1日,中国庆祝了其第74个国庆节。"
json_output = extract_structured_data(text, schema={"date": "日期", "event": "事件"})
print(json_output)
3.2 自动化报告生成
LLMs 可以用于自动化生成报告。例如,生成每日销售报告的 JSON 数据。
from llm_json_generator import generate_report
sales_data = {"product": "手机", "sales": 1000, "date": "2023-10-01"}
report = generate_report(sales_data, template="daily_sales_report")
print(report)
4. 典型生态项目
4.1 LangChain
LangChain 是一个用于构建基于 LLMs 的应用程序的框架。它提供了链式调用、工具集成等功能,帮助开发者构建复杂的应用。
4.2 Pydantic
Pydantic 是一个用于数据验证和设置管理的库。它与 LLMs 结合使用,可以确保生成的 JSON 数据符合预定义的结构。
4.3 Hugging Face Transformers
Hugging Face Transformers 提供了大量预训练的 LLMs,可以用于生成和处理结构化数据。
4.4 LlamaIndex
LlamaIndex 是一个用于构建知识图谱的工具,结合 LLMs 可以生成结构化的知识图谱数据。
通过这些生态项目,开发者可以更高效地利用 LLMs 生成和处理 JSON 数据,构建复杂的应用。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0134
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
最新内容推荐
【免费下载】 提升下载效率:BaiduExporter-Motrix 扩展程序推荐【亲测免费】 GRABIT:从图像文件中提取数据点的Matlab源码【亲测免费】 电力电表376.1协议Java版【亲测免费】 一键获取网站完整源码:打造您的专属网站副本 探索三维世界:Three.js加载GLTF文件示例项目推荐【亲测免费】 解决 fatal error C1083: 无法打开包括文件 "stdint.h": No such file or directory【免费下载】 华为网络搬迁工具 NMT 资源下载【免费下载】 LabVIEW 2018 资源下载指南 JDK 8 Update 341:稳定高效的Java开发环境【免费下载】 TSMC 0.18um PDK 资源文件下载
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
499
3.66 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
870
482
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
310
134
React Native鸿蒙化仓库
JavaScript
297
347
暂无简介
Dart
745
180
Ascend Extension for PyTorch
Python
302
343
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882