Chat Copilot项目中的引用显示问题分析与解决方案
在Chat Copilot项目的实际应用过程中,开发人员发现了一个关于引用显示的异常现象。当用户上传文件并与Copilot进行交互时,系统会始终显示引用卡片,即使AI生成的响应内容并未真正引用这些源文件。这个问题在0.9.0和0.9.1版本中持续存在,影响了用户体验。
问题现象
用户上传文件(包括docx和pdf格式)后,与Copilot进行对话时,系统会固定显示引用卡片,并附带相关性评分。这种现象在Windows和Azure平台上均有出现,使用VS Code作为开发环境时也能复现。值得注意的是,在极少数情况下,系统会如预期般不显示任何引用。
技术背景
Chat Copilot的后端架构采用了Azure Blobs作为Kernel Memory存储类型,使用Simple Queues进行编排。在向量数据库方面,系统采用In Process方式进行数据摄入,并通过Azure Cognitive Search实现检索功能。
问题根源
经过技术分析,这个问题源于系统工作流程的设计缺陷。实际运行中存在两个独立的过程:
- 引用卡片由Azure AI Search生成
- 实际响应内容由AI模型生成
这两个过程缺乏必要的协调机制,导致即使AI响应没有使用引用内容,系统仍会显示引用卡片。这种设计上的脱节造成了用户体验的不一致。
解决方案
针对这个问题,技术团队提出了一个有效的解决方案框架:
- 响应生成阶段:保持现有流程不变,AI模型正常生成响应内容
- 引用验证阶段:在AI完成响应生成后,新增一个验证环节
- 提取引用内容形成字符串
- 创建新的提示模板,包含特定的系统提示
- 要求AI判断响应是否实际使用了引用内容
- 根据验证结果决定是否显示引用卡片
这个解决方案的核心在于增加了一个验证层,通过AI自身的判断能力来确保引用显示的准确性。系统提示可以设计为:"以下'响应'是否使用了'引用'中的任何内容?仅回答'是'或'否'"。
实施建议
对于希望自行实现此解决方案的开发团队,建议:
- 在前端界面中,暂时隐藏引用卡片直到验证完成
- 设计高效的引用内容提取机制
- 创建专用的验证提示模板
- 实现简洁的结果解析逻辑
- 根据验证结果动态控制引用卡片的显示
这种方法虽然增加了少量计算开销,但显著提升了用户体验的一致性,值得在类似的知识问答系统中推广应用。
总结
Chat Copilot项目中遇到的引用显示问题展示了AI系统中组件协调的重要性。通过增加验证环节,开发团队成功解决了引用显示不准确的问题,为类似的知识问答系统提供了有价值的参考方案。这种解决方案不仅适用于当前项目,也可以推广到其他需要精确显示信息来源的AI应用场景中。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00