DataFusion项目中的WASM端到端Parquet读取测试实现
在DataFusion项目中,针对WebAssembly(WASM)环境的端到端Parquet文件读取测试是一个重要但尚未完全实现的功能。本文将深入探讨这一测试的必要性、实现思路以及具体的技术方案。
当前测试的局限性
目前DataFusion项目中对Parquet功能的测试主要集中在验证重新导出的Parquet功能本身,而没有覆盖到与DataFusion核心代码的集成部分。这种测试方式存在明显不足,因为它无法验证在实际应用场景中Parquet文件能否被正确读取和处理。
端到端测试的必要性
完整的端到端测试对于保证WASM环境下DataFusion功能的可靠性至关重要。通过模拟真实使用场景,可以验证以下关键点:
- 对象存储与DataFusion的集成是否正常
- Parquet文件在WASM环境下的解析能力
- SQL查询引擎对Parquet数据的处理能力
- 整个数据读取链路的完整性
实现方案详解
1. 创建内存对象存储
首先需要创建一个内存中的对象存储(InMemory ObjectStore),这是测试的基础。内存存储具有速度快、隔离性好等优点,非常适合测试场景。
use object_store::memory::InMemory;
let store = InMemory::new();
2. 准备测试数据
将预先准备好的Parquet测试数据加载到内存存储中。这些数据可以是手动生成的,也可以使用现有的测试数据集。
// 示例代码 - 将Parquet数据放入存储
let location = Path::from("test.parquet");
store.put(&location, Bytes::from(parquet_data)).await?;
3. 注册对象存储到DataFusion
将创建的内存对象存储注册到DataFusion执行上下文中,并指定访问路径。
let ctx = SessionContext::new();
ctx.runtime_env().register_object_store(
"memory",
"test_path",
Arc::new(store)
);
4. 执行SQL查询验证
最后通过执行SQL查询来验证整个流程是否正常工作。这是测试的关键验证点。
let df = ctx.sql("SELECT * FROM 'memory://test_path/test.parquet'").await?;
let results = df.collect().await?;
// 验证结果是否符合预期
测试设计考虑因素
在设计这类端到端测试时,需要考虑以下几个重要方面:
-
测试数据多样性:应该包含各种类型的Parquet文件,包括不同压缩格式、不同编码方式等。
-
错误处理:测试应该包含错误场景,如损坏的Parquet文件、不存在的路径等。
-
性能考量:在WASM环境下,性能是一个重要因素,测试应该包含基本的性能基准。
-
内存管理:WASM环境对内存使用较为敏感,测试应验证内存使用是否合理。
测试验证点
完整的端到端测试应该验证以下关键功能:
- 基本数据读取功能
- 复杂数据类型支持(如嵌套结构)
- 谓词下推优化
- 列投影优化
- 统计信息读取
- 分片读取能力
总结
实现DataFusion在WASM环境下的端到端Parquet读取测试是保证项目质量的重要环节。通过内存对象存储的模拟和完整的SQL查询验证,可以全面测试Parquet功能与DataFusion核心的集成情况。这种测试方法不仅适用于WASM环境,也可以扩展到其他平台的测试场景中。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0113
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00