Rook项目Ceph Dashboard模块加载失败问题分析与解决
问题背景
在Rook项目的持续集成测试中,开发团队发现使用最新开发版Ceph镜像时,对象存储和冒烟测试套件开始出现失败。具体表现为无法通过radosgw-admin命令创建dashboard-admin用户,以及Ceph Dashboard相关命令完全不可用。
错误现象
测试过程中主要出现两类错误:
-
radosgw-admin命令执行失败:当尝试执行
radosgw-admin user info --uid=dashboard-admin --rgw-realm=lite-store命令时,返回错误码22(EINVAL),提示"could not fetch user info: no user info saved"。 -
Dashboard模块缺失:所有
ceph dashboard相关命令均不可用,执行ceph dashboard ac-user-create等命令时提示"no valid command found"。
根本原因分析
经过深入排查,发现问题根源在于Ceph的Dashboard和Prometheus模块无法正常加载。从MGR日志中可以清晰看到模块加载失败的具体错误:
-
Prometheus模块加载失败:由于无法正确解析cherrypy的版本号,导致模块初始化失败。错误显示"Invalid version: 'unknown'"。
-
Dashboard模块加载失败:由于cherrypy模块结构变化,无法找到wsgiserver子模块。错误显示"No module named 'cherrypy.wsgiserver'"。
这些问题源于Ceph开发分支中Python依赖包的结构变化与模块代码不兼容所致。特别是cherrypy库的更新导致了向后兼容性问题。
解决方案
Ceph开发团队迅速响应,提交了修复补丁。主要解决措施包括:
-
更新了cherrypy版本兼容性检查逻辑,使其能够正确处理新版cherrypy的结构变化。
-
修复了Prometheus模块对cherrypy版本号的解析方式。
-
调整了Dashboard模块对cherrypy内部结构的引用方式,确保与新版本兼容。
经验总结
这次事件为我们提供了几个重要启示:
-
开发版镜像的稳定性:使用开发分支镜像进行测试时,需要警惕可能出现的兼容性问题。开发分支的快速迭代可能导致某些功能暂时不可用。
-
模块化架构的重要性:Ceph的模块化设计使得问题能够被快速定位和修复,而不会影响核心功能的稳定性。
-
依赖管理的复杂性:Python依赖包的版本管理在复杂系统中尤为重要,特别是当多个模块共享相同依赖时。
-
持续集成的价值:完善的CI系统能够快速发现这类兼容性问题,避免它们进入稳定版本。
后续改进
为了避免类似问题再次发生,建议采取以下措施:
-
在CI系统中增加模块健康检查,确保所有核心模块都能正常加载。
-
考虑在测试套件中加入基础功能验证,如检查关键命令的可用性。
-
建立更严格的依赖版本管理机制,特别是对于关键依赖如cherrypy等。
通过这次问题的解决,Rook项目与Ceph社区的协作得到了进一步加强,也为未来处理类似问题积累了宝贵经验。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C084
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00