Mockery v3.2.4版本发布:Go语言Mock工具的重要修复
Mockery是一个流行的Go语言mock生成工具,它能够根据接口定义自动生成mock实现代码,极大简化了Go语言单元测试的编写工作。Mockery通过解析Go源代码中的接口定义,生成符合该接口的mock结构体,开发者可以直接使用这些mock对象进行测试,而无需手动编写繁琐的mock实现。
版本核心修复内容
本次发布的v3.2.4版本主要包含三个重要的修复和改进,这些改进进一步提升了Mockery的稳定性和可用性。
1. 递归包生成正则表达式修复
在之前的版本中,当使用递归模式生成mock代码时,正则表达式匹配存在一些问题,可能导致某些包没有被正确识别和处理。这个修复确保了当开发者使用递归选项时,所有符合要求的包都能被正确扫描和生成mock代码。
这个改进特别适用于大型项目,其中接口可能分散在多个嵌套的子包中。现在开发者可以放心使用递归选项,确保不会遗漏任何需要mock的接口。
2. 可变参数在EXPECT().Run()中的处理修复
Go语言支持可变参数函数(variadic functions),即使用...语法定义的参数。在之前的Mockery版本中,当mock对象的方法包含可变参数时,在.EXPECT().Run()中的处理存在缺陷。
这个修复确保了可变参数能够被正确识别和处理,使得开发者可以像测试普通参数一样测试可变参数。例如,现在可以正确mock以下形式的函数:
func (m *MockExample) VariadicMethod(args ...interface{}) {
m.mock.Called(args...)
}
3. 未知MOCKERY_环境变量导致的panic修复
Mockery支持通过环境变量进行配置,但之前的版本中,如果系统中存在任何以"MOCKERY_"开头的环境变量(即使这些变量不是Mockery的有效配置项),都会导致程序panic。
这个修复使Mockery能够优雅地忽略未知的MOCKERY_前缀环境变量,只处理它实际识别的配置项。这提高了工具的健壮性,特别是在复杂的CI/CD环境中,可能无意中设置了各种环境变量的情况下。
版本兼容性与升级建议
v3.2.4版本是一个补丁版本,完全向后兼容v3.2.x系列。对于正在使用v3.2.x版本的用户,建议尽快升级以获取这些重要的修复。
对于从更早版本升级的用户,需要注意Mockery v3.x与v2.x有一些不兼容的变化,主要是配置方式和命令行参数的变化。建议查阅完整的升级指南进行迁移。
实际应用示例
让我们通过一个简单的例子展示Mockery的使用。假设我们有一个简单的接口定义:
package example
type Greeter interface {
Greet(name string) string
GreetAll(names ...string) []string
}
使用Mockery生成mock代码后,我们可以这样编写测试:
func TestGreeter(t *testing.T) {
mockGreeter := NewMockGreeter(t)
// 设置普通参数的期望
mockGreeter.EXPECT().Greet("Alice").Return("Hello, Alice!")
// 设置可变参数的期望
mockGreeter.EXPECT().GreetAll("Alice", "Bob").Return([]string{"Hello Alice", "Hello Bob"})
// 测试代码使用mock对象...
}
v3.2.4版本的修复确保了上述代码中无论是普通参数还是可变参数都能被正确处理。
总结
Mockery v3.2.4虽然是一个小版本更新,但包含了几个关键修复,特别是对可变参数处理和递归包生成的支持改进,使得这个工具在复杂场景下的表现更加可靠。对于依赖Mockery进行单元测试的Go项目,升级到这个版本将获得更好的开发体验和更稳定的测试环境。
作为Go生态中广泛使用的mock工具,Mockery持续改进其功能和稳定性,为Go开发者提供了强大的测试支持。建议所有用户考虑升级到最新版本,以利用这些改进和修复。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00