KubeGems 开源项目安装与使用教程
1. 项目介绍
KubeGems 是一个开源的、企业级的多租户容器云平台。它围绕云原生社区构建,提供了对多个 Kubernetes 集群的丰富组件管理和资源成本分析能力,帮助企业快速构建和部署本地化的、功能强大且成本低廉的云管理平台。
KubeGems 的主要特点包括:
- 多 Kubernetes 集群管理:支持多个 Kubernetes 集群的集中统一管理。
- 多租户管理:提供企业级的多租户管理功能。
- 插件管理:支持丰富的云原生生态插件,实现即时插拔。
- GitOps:结合 Argocd/Rollout 实现 GitOps 工作流。
- 可观测性:基于 OpenTelemetry 提供全面的监控、日志、事件和审计功能。
- 服务网格:基于 Istio 的服务网格管理。
- 应用商店:内置丰富的应用市场,支持应用的生命周期管理。
- AI/机器学习平台:提供一站式 AI 开发和训练平台。
2. 项目快速启动
2.1 安装 Kubernetes 集群
首先,您需要安装一个 Kubernetes 集群。支持的 Kubernetes 版本为 v1.20 及以上。您可以使用以下任意一种方法来安装 Kubernetes 集群:
- kubeadm
- kind
- kubekey
2.2 安装 KubeGems
选择一个 KubeGems 版本,并设置环境变量:
export KUBEGEMS_VERSION=<TAG_NAME> # 替换为具体的 KubeGems 版本
在 Kubernetes 集群准备好后,安装 KubeGems 安装器操作符:
kubectl create namespace kubegems-installer
kubectl apply -f "https://github.com/kubegems/kubegems/raw/$[KUBEGEMS_VERSION]/deploy/installer.yaml"
安装 KubeGems:
kubectl create namespace kubegems
export STORAGE_CLASS=local-path # 设置为您的存储类
curl -sL "https://github.com/kubegems/kubegems/raw/$[KUBEGEMS_VERSION]/deploy/kubegems.yaml" \
| sed -e "s/local-path/$[STORAGE_CLASS]/g" > kubegems.yaml
kubectl apply -f kubegems.yaml
更多安装信息请参考 KubeGems 官方文档。
3. 应用案例和最佳实践
KubeGems 已经在多家企业成功部署,并为核心业务提供了稳定、长期的支持。以下是一些应用案例和最佳实践:
3.1 企业内部云平台
KubeGems 帮助企业快速构建内部云平台,提供多租户管理、资源成本分析和丰富的云原生生态插件,满足企业多样化的云管理需求。
3.2 AI/机器学习平台
KubeGems 内置的 AI/机器学习平台支持模型开发、训练、部署和推理优化,帮助企业快速落地和布局 AI 产业。
3.3 云边一体化管理
KubeGems 联合 Rancher k3s 支持云边一体化管理,提供边缘设备的统一注册、认证流程,支持边缘应用异步批量化更新,极大提高了企业 IoT 和边缘服务的管理效率。
4. 典型生态项目
KubeGems 与多个云原生生态项目紧密集成,提供了丰富的功能和扩展能力。以下是一些典型的生态项目:
4.1 Istio
KubeGems 基于 Istio 提供服务网格管理,支持微服务的流量管理、安全性和可观测性。
4.2 OpenTelemetry
KubeGems 使用 OpenTelemetry 提供全面的监控、日志、事件和审计功能,支持多种开发语言的 SDK 接入。
4.3 ArgoCD
KubeGems 结合 ArgoCD 实现 GitOps 工作流,支持应用的持续交付和自动化部署。
4.4 Rancher k3s
KubeGems 联合 Rancher k3s 支持云边一体化管理,提供边缘设备的统一注册、认证流程,支持边缘应用异步批量化更新。
通过以上模块的介绍,您可以快速了解 KubeGems 的功能和使用方法,并根据实际需求进行部署和应用。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00