LLaMA-Factory项目中如何扩展Tokenizer词汇表
2025-05-02 00:58:48作者:彭桢灵Jeremy
在LLaMA-Factory项目中,用户经常会遇到需要扩展模型词汇表的需求。本文将详细介绍如何为LLaMA-2模型添加新的token,并解释相关技术原理。
为什么需要扩展词汇表
在实际应用中,我们经常需要模型识别和处理一些特殊词汇或领域专有名词。这些词汇可能不在原始模型的词汇表中,导致模型无法正确理解和处理。通过扩展词汇表,我们可以让模型更好地适应特定领域的任务。
使用Transformers库扩展词汇表
LLaMA-Factory基于Hugging Face的Transformers库构建,因此我们可以直接使用Transformers提供的API来扩展词汇表。以下是具体操作步骤:
- 首先加载原始tokenizer:
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
- 添加新token:
tokenizer.add_tokens(["X1", "X2", "X3"])
- 保存修改后的tokenizer:
tokenizer.save_pretrained("other_dir")
在LLaMA-Factory中的集成
虽然LLaMA-Factory提供了可视化界面和YAML配置文件两种训练方式,但直接修改词汇表的操作需要在Python环境中完成。这是因为:
- 词汇表修改是一个预处理步骤,应该在训练前完成
- 修改后的tokenizer需要保存到指定目录
- 后续训练可以指向这个修改后的tokenizer目录
技术原理深入
当调用add_tokens
方法时,Transformers库会:
- 检查新token是否已存在于词汇表中
- 为每个新token分配一个唯一的ID
- 扩展模型的嵌入层(embedding layer)以容纳新token
- 随机初始化新token的嵌入向量
需要注意的是,添加新token后,模型的输入输出维度会发生变化,因此需要重新训练或微调模型,让模型学习这些新token的语义表示。
最佳实践建议
- 在添加大量新token时,建议先进行词汇频率分析,只添加高频词汇
- 添加token后,应该进行适当的微调训练
- 可以结合领域语料进行持续预训练,帮助模型更好地理解新token
- 记录所有添加的token,便于后续维护和版本控制
通过以上方法,用户可以有效地扩展LLaMA-2模型的词汇表,使其更好地适应特定应用场景的需求。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0111DuiLib_Ultimate
DuiLib_Ultimate是duilib库的增强拓展版,库修复了大量用户在开发使用中反馈的Bug,新增了更加贴近产品开发需求的功能,并持续维护更新。C++03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。08- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile03
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
- Dd2l-zh《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。Python011
热门内容推荐
最新内容推荐
项目优选
收起

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
340
1.2 K

React Native鸿蒙化仓库
C++
190
267

deepin linux kernel
C
22
6

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
901
537

openGauss kernel ~ openGauss is an open source relational database management system
C++
141
188

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
62
59

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
376
387

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.09 K
0

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
87
4