async_simple中阻塞任务调度的设计与实现
阻塞任务处理的必要性
在现代异步编程框架中,如何处理阻塞任务一直是一个关键问题。async_simple作为阿里巴巴开源的C++协程库,同样面临着这个挑战。阻塞任务如果直接放在协程中执行,会导致整个协程调度器被阻塞,严重影响系统吞吐量。
async_simple的解决方案
async_simple采用了与Tokio类似的思路,但实现上更加灵活。它通过以下机制支持阻塞任务处理:
-
执行器抽象层:async_simple定义了统一的Executor接口,但不强制绑定具体实现,这为用户提供了极大的灵活性。
-
多执行器支持:用户可以创建多个执行器实例,例如一个用于普通协程,一个专门处理阻塞任务。这种设计类似于Tokio的spawn_blocking机制。
-
动态执行器切换:协程可以在不同执行器间迁移,通过
start().via()方法可以指定协程在特定执行器上运行。
实现阻塞任务调度的实践方案
要实现在async_simple中处理阻塞任务,可以按照以下步骤:
-
创建两个执行器实例:
- 主执行器:处理常规异步任务
- 阻塞执行器:专用于处理阻塞调用
-
封装任务提交接口:
template<typename Func> auto spawn_blocking(Func&& func) { return async_simple::coro::Lazy<void>::lazy(std::forward<Func>(func)) .start().via(blocking_executor); } -
使用时区分任务类型:
// 普通异步任务 co_await async_task(); // 阻塞任务 co_await spawn_blocking([]{ // 阻塞操作 });
高级调度策略探讨
除了基本的阻塞任务处理,async_simple的执行器设计还支持更复杂的调度策略:
-
优先级调度:可以通过扩展执行器实现多级队列,为不同优先级的任务分配不同的处理权重。
-
时间片控制:执行器可以记录任务执行时间,实现公平调度或时间片轮转。
-
工作窃取:SimpleExecutor已经实现了work stealing,可以进一步提高多核利用率。
-
CFS调度:借鉴Linux的完全公平调度算法,可以实现更精细的任务调度。
设计哲学与优势
async_simple的这种设计体现了几个重要理念:
-
关注点分离:将执行策略与协程逻辑解耦,使两者可以独立演进。
-
可扩展性:通过抽象接口允许用户自定义执行器实现。
-
灵活性:不强制特定的调度策略,适应不同场景需求。
这种设计使得async_simple既能够处理常规的异步任务,又能优雅地应对阻塞操作,同时保留了实现更复杂调度策略的可能性,为高性能异步程序开发提供了坚实的基础设施。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C092
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00