Dawarich项目中的位置数据导入问题分析与解决方案
2025-06-13 12:30:44作者:宣海椒Queenly
数据导入差异现象
在使用Dawarich项目导入Google位置历史数据时,用户发现导入后的地图显示点数量明显少于Google Timeline中显示的点数。具体表现为:导入4月和5月数据后,Dawarich仅显示164个和61个点,而Google Timeline则显示了更完整的轨迹。
问题根源分析
经过深入调查,发现这一问题主要由以下几个因素导致:
-
数据来源差异:Google提供两种位置数据导出方式
- Semantic Location History:包含语义化位置信息,但点数量较少
- Records.json:包含原始位置数据,信息更完整但文件体积较大
-
数据处理逻辑:Dawarich在导入时仅处理包含经度、纬度和时间戳的有效点数据,会忽略重复点和部分语义化位置信息
-
Google数据展示机制:Google Timeline在展示时可能使用了额外的数据处理算法和补充数据源,而导出数据可能不包含这些处理结果
解决方案与实践
针对这一问题,推荐以下解决方案:
-
优先使用手机直接导出:
- 通过手机设置直接导出位置历史数据(Android设备路径通常为:设置→位置→位置服务→时间线)
- 导出的JSON文件通常为40MB左右,包含更完整的位置点
- 可直接通过Dawarich Web界面完整导入
-
Records.json导入:
- 虽然文件较大(可能达到900MB),但包含最完整的原始位置数据
- 可通过Dawarich Web界面导入,无需额外处理
-
数据验证方法:
- 检查原始JSON文件中"latitude"字段数量确认总点数
- 比较不同数据源在Dawarich中的展示效果
技术建议与最佳实践
-
数据完整性:手机直接导出的数据与Dawarich展示结果完全一致,验证了Dawarich处理逻辑的正确性
-
性能考虑:
- 大规模数据导入可能需要较长时间(实测230,000点需要48小时)
- 建议分批处理历史数据,避免单次导入过大文件
-
数据差异处理:理解Google不同展示端(Web/移动端)可能存在的数据处理差异,不以单一来源为绝对标准
通过以上分析和实践,用户可以更有效地将Google位置历史数据迁移到Dawarich平台,并获得满意的可视化效果。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
262
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217