CoastSat 开源项目教程
2024-09-18 06:23:10作者:邓越浪Henry
1. 项目目录结构及介绍
CoastSat 是一个用于从卫星图像中提取全球海岸线位置的开源软件工具包。以下是项目的目录结构及其介绍:
CoastSat/
├── classification/
│ ├── __init__.py
│ ├── classifier.py
│ ├── re-train_CoastSat_classifier.ipynb
│ └── ...
├── doc/
│ ├── README.md
│ └── ...
├── examples/
│ ├── example.py
│ ├── example_jupyter.ipynb
│ └── ...
├── test/
│ ├── __init__.py
│ ├── test_download.py
│ └── ...
├── .gitignore
├── LICENSE
├── README.md
├── example.py
├── example_jupyter.ipynb
└── ...
目录介绍
- classification/: 包含用于图像分类的脚本和重新训练分类器的 Jupyter Notebook。
- doc/: 包含项目的文档文件,如 README.md。
- examples/: 包含示例脚本和 Jupyter Notebook,用于演示如何使用 CoastSat。
- test/: 包含测试脚本,用于验证代码的正确性。
- .gitignore: Git 忽略文件,指定哪些文件和目录不应被版本控制。
- LICENSE: 项目的开源许可证文件。
- README.md: 项目的主 README 文件,包含项目的基本信息和使用说明。
- example.py: 示例 Python 脚本,演示如何使用 CoastSat。
- example_jupyter.ipynb: 示例 Jupyter Notebook,演示如何使用 CoastSat。
2. 项目启动文件介绍
CoastSat 项目的启动文件主要是 example.py 和 example_jupyter.ipynb。这两个文件都提供了如何使用 CoastSat 的示例代码。
example.py
这是一个 Python 脚本,展示了如何从 Google Earth Engine 中检索卫星图像,并使用 CoastSat 提取海岸线。以下是启动该脚本的步骤:
- 确保你已经安装了所有必要的依赖项。
- 在终端或命令行中运行以下命令:
python example.py
example_jupyter.ipynb
这是一个 Jupyter Notebook,提供了交互式的示例代码,展示了如何使用 CoastSat 提取海岸线。以下是启动该 Notebook 的步骤:
- 确保你已经安装了 Jupyter Notebook。
- 在终端或命令行中运行以下命令启动 Jupyter Notebook:
jupyter notebook - 在 Jupyter Notebook 界面中打开
example_jupyter.ipynb。
3. 项目的配置文件介绍
CoastSat 项目没有传统的配置文件,但用户可以通过修改 settings 字典来配置项目的运行参数。以下是一些常见的配置参数及其介绍:
settings 字典
在 example.py 和 example_jupyter.ipynb 中,你可以找到 settings 字典,用于配置 CoastSat 的运行参数。以下是一些常见的配置参数:
- cloud_thresh: 云覆盖阈值,用于筛选图像。
- dist_clouds: 云遮挡距离,用于排除云遮挡区域。
- output_epsg: 输出坐标系的 EPSG 代码。
- check_detection: 是否进行交互式检测验证。
- adjust_detection: 是否允许用户调整检测结果。
- save_figure: 是否保存检测结果的图像。
示例配置
settings = {
'cloud_thresh': 0.5,
'dist_clouds': 300,
'output_epsg': 28356,
'check_detection': True,
'adjust_detection': False,
'save_figure': True
}
通过修改这些参数,用户可以根据自己的需求定制 CoastSat 的运行行为。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
669
155
Ascend Extension for PyTorch
Python
219
236
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
307
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
259
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
652
仓颉编程语言运行时与标准库。
Cangjie
141
877
仓颉编译器源码及 cjdb 调试工具。
C++
134
867