CoastSat 开源项目教程
2024-09-18 18:54:46作者:邓越浪Henry
1. 项目目录结构及介绍
CoastSat 是一个用于从卫星图像中提取全球海岸线位置的开源软件工具包。以下是项目的目录结构及其介绍:
CoastSat/
├── classification/
│ ├── __init__.py
│ ├── classifier.py
│ ├── re-train_CoastSat_classifier.ipynb
│ └── ...
├── doc/
│ ├── README.md
│ └── ...
├── examples/
│ ├── example.py
│ ├── example_jupyter.ipynb
│ └── ...
├── test/
│ ├── __init__.py
│ ├── test_download.py
│ └── ...
├── .gitignore
├── LICENSE
├── README.md
├── example.py
├── example_jupyter.ipynb
└── ...
目录介绍
- classification/: 包含用于图像分类的脚本和重新训练分类器的 Jupyter Notebook。
- doc/: 包含项目的文档文件,如 README.md。
- examples/: 包含示例脚本和 Jupyter Notebook,用于演示如何使用 CoastSat。
- test/: 包含测试脚本,用于验证代码的正确性。
- .gitignore: Git 忽略文件,指定哪些文件和目录不应被版本控制。
- LICENSE: 项目的开源许可证文件。
- README.md: 项目的主 README 文件,包含项目的基本信息和使用说明。
- example.py: 示例 Python 脚本,演示如何使用 CoastSat。
- example_jupyter.ipynb: 示例 Jupyter Notebook,演示如何使用 CoastSat。
2. 项目启动文件介绍
CoastSat 项目的启动文件主要是 example.py 和 example_jupyter.ipynb。这两个文件都提供了如何使用 CoastSat 的示例代码。
example.py
这是一个 Python 脚本,展示了如何从 Google Earth Engine 中检索卫星图像,并使用 CoastSat 提取海岸线。以下是启动该脚本的步骤:
- 确保你已经安装了所有必要的依赖项。
- 在终端或命令行中运行以下命令:
python example.py
example_jupyter.ipynb
这是一个 Jupyter Notebook,提供了交互式的示例代码,展示了如何使用 CoastSat 提取海岸线。以下是启动该 Notebook 的步骤:
- 确保你已经安装了 Jupyter Notebook。
- 在终端或命令行中运行以下命令启动 Jupyter Notebook:
jupyter notebook - 在 Jupyter Notebook 界面中打开
example_jupyter.ipynb。
3. 项目的配置文件介绍
CoastSat 项目没有传统的配置文件,但用户可以通过修改 settings 字典来配置项目的运行参数。以下是一些常见的配置参数及其介绍:
settings 字典
在 example.py 和 example_jupyter.ipynb 中,你可以找到 settings 字典,用于配置 CoastSat 的运行参数。以下是一些常见的配置参数:
- cloud_thresh: 云覆盖阈值,用于筛选图像。
- dist_clouds: 云遮挡距离,用于排除云遮挡区域。
- output_epsg: 输出坐标系的 EPSG 代码。
- check_detection: 是否进行交互式检测验证。
- adjust_detection: 是否允许用户调整检测结果。
- save_figure: 是否保存检测结果的图像。
示例配置
settings = {
'cloud_thresh': 0.5,
'dist_clouds': 300,
'output_epsg': 28356,
'check_detection': True,
'adjust_detection': False,
'save_figure': True
}
通过修改这些参数,用户可以根据自己的需求定制 CoastSat 的运行行为。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
341
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178