Reactor Core项目中TimedScheduler未停止样本问题分析与修复
2025-06-09 20:48:22作者:吴年前Myrtle
在Reactor Core项目的Micrometer集成模块中,TimedScheduler实现存在一个潜在的性能问题:当使用TimedScheduler装饰Reactor调度器时,某些情况下会导致未正确清理的任务样本堆积,进而引发CPU使用率异常升高。本文将深入分析该问题的技术背景、产生原因及解决方案。
问题背景
TimedScheduler是Reactor Core提供的一个装饰器类,用于为底层调度器添加Micrometer指标采集功能。它通过包装原始Runnable任务为TimedRunnable来实现对任务执行时间的监控,其中关键指标包括:
- 待处理任务数(pendingTasks)
- 任务执行时间(executionTime)
- 任务提交延迟(submissionLatency)
在正常流程中,每个TimedRunnable实例会在任务执行或取消时停止对应的指标采样。但实际生产环境中发现,部分样本未被正确停止,导致pendingTasks指标持续增长。
问题根源分析
通过问题重现和代码审查,发现核心问题存在于任务取消处理流程中:
- 原始实现中,TimedScheduler直接装饰Scheduler接口,而非Scheduler.Worker
- 当任务被取消时(如超时或显式dispose),底层Worker能够跟踪并取消已提交任务
- 但TimedScheduler未正确处理Worker层面的任务取消通知,导致pendingTasks样本泄漏
典型重现场景包括:
- 使用timeout操作符时触发的任务取消
- 调度器dispose时未完成任务的强制终止
- 长时间运行任务被中断的情况
技术解决方案
修复方案主要包含以下关键改进:
- Worker级装饰:将装饰目标从Scheduler改为Scheduler.Worker,确保能正确捕获所有任务生命周期事件
- 取消通知处理:增强TimedRunnable对dispose事件的响应,确保任何取消操作都会停止指标采样
- 资源清理保证:在调度器dispose时强制清理所有待处理任务的指标样本
改进后的任务处理流程:
class TimedRunnable {
void run() {
try {
pendingSample.stop();
delegate.run();
} finally {
executionSample.stop();
}
}
void dispose() {
pendingSample.stop();
delegate.dispose();
}
}
生产环境验证
该修复已在生产环境得到充分验证:
- 原monkey-patch方案移除pendingTasks指标后CPU恢复正常
- 应用官方修复后,包含完整指标采集的情况下系统保持稳定
- 连续24小时以上监控显示无样本泄漏情况
版本与升级建议
该修复将包含在以下版本中:
- 3.5.20(维护分支)
- 3.6.9(当前稳定版)
- 3.7.0-M5(开发里程碑版)
建议受影响用户升级至包含修复的版本,特别是在以下场景:
- 使用boundedElastic等弹性调度器
- 高频使用timeout等可能取消任务的操作符
- 需要精确监控调度器指标的生产环境
最佳实践补充
为避免类似问题,建议在指标采集场景中:
- 定期监控activeTasks指标异常增长
- 对调度器配置合理的dispose超时时间
- 在负载测试阶段验证指标采集的稳定性
- 考虑使用Micrometer的指标缓存配置优化高频采集场景
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
262
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217