Apollo Router v2.3.0 版本发布:连接器增强与性能优化
Apollo Router 是一个高性能的 GraphQL 网关,用于构建和管理 GraphQL 联邦架构。作为 GraphQL 请求的路由中心,它能够智能地将查询分发到各个子图服务,并聚合结果返回给客户端。最新发布的 v2.3.0 版本带来了一系列重要改进,特别是在连接器功能、订阅去重和错误处理方面。
连接器功能全面升级
v2.3.0 版本最显著的改进是对连接器(Connectors)功能的增强。连接器现在支持 Connect 规范 v0.2 版本,这为开发者带来了三项重要能力:
-
批量请求支持:现在可以在单个请求中处理多个操作,减少网络往返次数,提高整体性能。
-
错误自定义:开发者可以更灵活地定义和处理错误,提供更精确的错误信息给客户端。
-
直接访问 HTTP 头:连接器现在可以直接访问 HTTP 请求头,为身份验证、跟踪等场景提供了更多可能性。
要使用这些新功能,需要将 Router 升级到 2.3 版本,同时将 Federation 更新到 2.11 版本,并将子图中的 @link 指令更新为使用 https://specs.apollo.dev/connect/v0.2 规范。
内容类型处理更加智能
连接器现在能够根据响应中的 content-type 头智能处理不同类型的内容:
- 对于以
/json或+json结尾的内容类型(如application/json或application/vnd.foo+json),内容会被解析为 JSON。 - 对于
text/plain类型,内容会被视为 UTF-8 字符串,可以通过$变量在selection映射中访问。 - 其他内容类型会被视为 JSON
null。 - 如果没有提供
content-type头,内容会被假定为 JSON 并尝试解析。
如果反序列化失败,系统会返回一个明确的错误信息,包含 CONNECTOR_DESERIALIZE 错误代码,帮助开发者快速定位问题。
订阅去重功能增强
订阅功能的去重机制得到了显著改进。在之前的版本中,任何不同的头部信息(即使是像 user-agent 这样不影响订阅响应的头部)都会限制去重的效果。v2.3.0 引入了 ignored_headers 配置选项,允许开发者指定在去重过程中应该忽略的头部:
subscription:
enabled: true
deduplication:
enabled: true
ignored_headers:
- x-transaction-id
- custom-header-name
这一改进使得即使请求中包含唯一或变化的头部值(只要这些头部不影响订阅事件数据),也能充分利用订阅去重的优势,减少不必要的重复请求。
错误处理和监控改进
v2.3.0 在错误处理和监控方面也做了多项改进:
-
更详细的错误信息:对于连接器和需求控制相关的错误,Apollo 遥测现在会包含原始错误消息和路径,帮助开发者更快定位问题。
-
响应体遥测选择器:新增的
response_body选择器允许在遥测配置中访问响应体,为监控和日志记录提供了更详细的数据。 -
日志级别调整:JWT 认证失败的日志级别从
error降回info,避免在正常业务场景下产生过多错误日志。 -
健康检查端点:修复了健康检查端点无法禁用的问题,现在可以通过配置完全关闭健康检查功能。
性能优化与稳定性提升
在底层性能方面,v2.3.0 也做了多项优化:
-
Redis 连接增强:增加了超时设置和连接健康检查(每10秒发送一次 PING),提高了 Redis 客户端在各种故障模式下的弹性。
-
HTTP 路由规范遵循:现在
http.route只包含路径部分(如/graphql),而不包含完整 URI,解决了高基数问题。 -
变量处理改进:修复了在嵌套输入参数中使用变量时连接器可能出错的问题。
总结
Apollo Router v2.3.0 是一个功能丰富且稳定的版本,特别适合需要高级连接器功能、高效订阅处理和完善监控能力的 GraphQL 联邦架构。通过这次更新,开发者可以获得更灵活的数据获取方式、更可靠的错误处理和更细致的监控指标,同时系统整体稳定性和性能也得到了提升。
对于已经在使用 Apollo Router 的团队,建议评估新功能并规划升级路线,特别是那些依赖连接器或使用订阅功能的场景。新项目则可以直接从 v2.3.0 开始,享受这些改进带来的开发便利和性能优势。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C067
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00