使用reviewdog和golangci-lint进行代码审查
1、项目介绍
reviewdog/action-golangci-lint 是一个GitHub Action,用于在Pull Request中运行 golangci-lint 并使用 reviewdog 进行代码审查。golangci-lint 是一个Go语言的静态代码分析工具,而 reviewdog 则是一个自动化的代码审查工具,可以将代码分析结果反馈到GitHub的Pull Request中。
这个Action的主要功能是自动在GitHub的Pull Request中运行 golangci-lint,并将结果通过 reviewdog 反馈到Pull Request的评论中,从而帮助开发者及时发现和修复代码中的问题。
2、项目快速启动
2.1 安装和配置
首先,你需要在你的GitHub仓库中创建一个 .github/workflows 目录,并在其中创建一个 .yml 文件,例如 reviewdog.yml。
2.2 配置GitHub Action
在 reviewdog.yml 文件中添加以下内容:
name: reviewdog
on: [pull_request]
jobs:
golangci-lint:
name: runner / golangci-lint
runs-on: ubuntu-latest
steps:
- name: Check out code into the Go module directory
uses: actions/checkout@v3
with:
fetch-depth: 0
- name: golangci-lint
uses: reviewdog/action-golangci-lint@v2
2.3 运行GitHub Action
提交并推送这个配置文件到你的GitHub仓库后,每当有新的Pull Request时,GitHub Action会自动运行 golangci-lint,并通过 reviewdog 将结果反馈到Pull Request中。
3、应用案例和最佳实践
3.1 自定义 golangci-lint 配置
你可以通过 golangci_lint_flags 参数来自定义 golangci-lint 的行为。例如,如果你想使用特定的配置文件,可以在 reviewdog.yml 中添加以下内容:
- name: golangci-lint
uses: reviewdog/action-golangci-lint@v2
with:
golangci_lint_flags: "--config=.github/golangci.yml"
3.2 使用不同的 reviewdog 报告级别
你可以通过 level 参数来设置 reviewdog 的报告级别。例如,如果你想将报告级别设置为 warning,可以在 reviewdog.yml 中添加以下内容:
- name: golangci-lint
uses: reviewdog/action-golangci-lint@v2
with:
level: warning
4、典型生态项目
4.1 golangci-lint
golangci-lint 是一个Go语言的静态代码分析工具,支持多种代码检查器,如 golint、errcheck、staticcheck 等。它可以帮助开发者快速发现代码中的潜在问题。
4.2 reviewdog
reviewdog 是一个自动化的代码审查工具,可以将代码分析结果反馈到GitHub的Pull Request中。它支持多种代码分析工具,如 golangci-lint、eslint、flake8 等。
4.3 actions/checkout
actions/checkout 是一个GitHub Action,用于从GitHub仓库中检出代码。它是 reviewdog/action-golangci-lint 的基础,用于获取代码并进行分析。
通过结合这些工具,开发者可以在GitHub的Pull Request中自动进行代码审查,从而提高代码质量和开发效率。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00