Snakemake在SLURM集群中按规则分配不同计算分区的最佳实践
2025-07-01 15:42:30作者:殷蕙予
背景介绍
在生物信息学工作流管理工具Snakemake中,当我们需要在SLURM集群上运行包含不同类型计算任务(如CPU密集型任务和GPU加速任务)的流程时,经常需要将不同的规则分配到不同的计算分区。本文介绍如何通过Snakemake配置文件实现这一需求。
问题分析
在SLURM集群环境中,通常会有多种计算分区:
- 普通CPU计算分区(如dev、normal等)
- GPU加速计算分区
- 大内存计算分区等
当工作流中同时包含普通计算任务和GPU加速任务时,我们需要:
- 默认任务使用普通计算分区
- 特定规则(如深度学习模型训练)使用GPU分区
解决方案
基础配置文件设置
首先,在Snakemake配置文件中设置默认资源参数:
use-singularity: true
singularity-args: '-B /data/ --cleanenv'
jobs: 100
latency-wait: 36000
cluster: 'sbatch -t {resources.time} --mem={resources.mem_gb}G -c {threads} -o logs/{rule}_{wildcards}.log -p {resources.slurm_partition}'
default-resources:
cpus: 8
mem_gb: 50
time: '100:00:00'
slurm_partition: "dev" # 默认分区
为特定规则设置不同分区
通过set-resources参数为需要GPU的规则指定不同的分区:
set-resources:
train_model: # 规则名称
slurm_partition: "gpu" # 使用GPU分区
gpus: 1 # 同时可以指定GPU数量
完整示例
以下是一个完整的配置文件示例:
use-singularity: true
singularity-args: '-B /data/ --cleanenv'
jobs: 100
latency-wait: 36000
keep-going: true
rerun-incomplete: true
cluster: 'sbatch -t {resources.time} --mem={resources.mem_gb}G -c {threads} --gres=gpu:{resources.gpus} -o logs/{rule}_{wildcards}.log -p {resources.slurm_partition}'
default-resources:
cpus: 8
mem_gb: 50
time: '100:00:00'
slurm_partition: "dev"
gpus: 0 # 默认不使用GPU
set-resources:
train_cnn:
slurm_partition: "gpu"
gpus: 1
train_transformer:
slurm_partition: "gpu"
gpus: 2
高级技巧
-
多级分区策略:可以设置更多层级的分区,如大内存分区:
set-resources: process_large_data: slurm_partition: "bigmem" -
动态资源分配:结合wildcards实现更灵活的资源分配:
rule train_model: input: ... output: ... resources: slurm_partition=lambda wildcards: "gpu-a100" if wildcards.model_type == "large" else "gpu" -
资源继承:子规则可以继承父规则的资源设置,保持一致性。
注意事项
- 确保配置文件中指定的分区名称与集群实际存在的分区名称完全一致
- 测试时可以先使用
--dry-run参数验证资源分配是否正确 - 对于GPU任务,除了分区外,还需要通过
--gres=gpu:N参数指定GPU数量 - 不同集群可能有不同的资源限制策略,建议与集群管理员确认分区使用规则
通过这种配置方式,Snakemake工作流可以智能地将不同计算需求的规则分配到合适的计算节点,既提高了资源利用率,又确保了计算任务的顺利执行。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
291
2.62 K
Ascend Extension for PyTorch
Python
123
149
暂无简介
Dart
582
127
React Native鸿蒙化仓库
JavaScript
227
306
仓颉编译器源码及 cjdb 调试工具。
C++
121
374
仓颉编程语言运行时与标准库。
Cangjie
130
387
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
610
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
185
openGauss kernel ~ openGauss is an open source relational database management system
C++
155
205