IndexTank Service 技术文档
1. 安装指南
1.1 环境准备
在安装 IndexTank Service 之前,请确保您的系统满足以下依赖要求:
- Django 1.2.x(推荐使用 1.2.7 版本,不兼容 1.3.x)
- Python 2.6.6
- Java(TM) SE Runtime Environment(推荐使用 build 1.6.0_24-b07)
- nginx
- uWSGI
- MySQL
- daemontools
- Thrift 库(已提供 0.5.0 版本的生成源代码)
1.2 数据库配置
首先,您需要创建数据库架构。使用以下命令:
python manage.py syncdb
该命令将根据 Django 的模型定义自动创建所需的数据库表。
1.3 创建账户
在数据库配置完成后,您需要创建一个账户。可以通过 Storefront 应用中的用户注册表单来完成此操作。
1.4 启动索引实例
在账户创建完成后,您需要启动一个索引实例(IndexTank Engine)。确保 IndexTank Engine 已正确安装并配置。
1.5 启动 API
最后,启动 API 服务。您可以使用以下命令:
python manage.py runserver
2. 项目的使用说明
2.1 API 使用
API 是 IndexTank Service 的核心组件,它提供了 REST JSON API,允许用户管理账户、索引数据以及执行搜索操作。API 通过 Thrift 与特定的索引实例进行交互。
2.2 Backoffice 使用
Backoffice 是一个 Django 应用,允许管理员进行手动管理操作。您可以通过 Backoffice 管理用户账户、索引实例以及其他系统资源。
2.3 Storefront 使用
Storefront 是 IndexTank Service 的 Web 界面,包含用户注册表单。用户可以通过 Storefront 创建账户并管理其索引实例。
2.4 Nebu 使用
Nebu 是索引、部署和工作节点的管理器。一个工作节点(服务器实例)可以包含一个或多个部署(索引实例)。Nebu 负责管理这些实例的生命周期。
3. 项目 API 使用文档
3.1 索引管理
通过 API,您可以创建、删除和管理索引实例。以下是一些常用的 API 操作:
- 创建索引:
POST /api/v1/indexes - 删除索引:
DELETE /api/v1/indexes/{index_id} - 获取索引信息:
GET /api/v1/indexes/{index_id}
3.2 数据索引
您可以通过 API 将数据索引到指定的索引实例中。以下是一些常用的 API 操作:
- 添加文档:
POST /api/v1/indexes/{index_id}/documents - 删除文档:
DELETE /api/v1/indexes/{index_id}/documents/{document_id} - 更新文档:
PUT /api/v1/indexes/{index_id}/documents/{document_id}
3.3 搜索操作
通过 API,您可以执行搜索操作。以下是一些常用的 API 操作:
- 执行搜索:
GET /api/v1/indexes/{index_id}/search?q={query} - 高级搜索:
GET /api/v1/indexes/{index_id}/search?q={query}&filters={filters}
4. 项目安装方式
4.1 从源代码安装
-
克隆 IndexTank Service 的源代码仓库:
git clone https://github.com/linkedin/indextank-service.git -
进入项目目录:
cd indextank-service -
安装依赖项:
pip install -r requirements.txt -
配置数据库并启动服务,具体步骤请参考第 1 节“安装指南”。
4.2 使用 Docker 安装
如果您希望使用 Docker 来简化安装过程,可以参考以下步骤:
-
构建 Docker 镜像:
docker build -t indextank-service . -
运行 Docker 容器:
docker run -d -p 8000:8000 indextank-service -
访问
http://localhost:8000来使用 IndexTank Service。
通过以上步骤,您应该能够成功安装并使用 IndexTank Service。如果您在安装或使用过程中遇到任何问题,请参考项目的官方文档或联系技术支持。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00