pymoo多目标优化问题并行化实现技巧
2025-07-01 18:11:55作者:胡唯隽
并行化评估函数的设计要点
在使用pymoo进行多目标优化时,当目标函数和约束条件计算量较大时,采用并行化评估可以显著提高优化效率。但在实现过程中需要注意几个关键点:
问题分析
在用户提供的代码中,主要存在两个问题:
- 输出数组形状不正确:
out["F"]
和out["G"]
的数组形状不符合pymoo的要求 - 并行化方式不够高效:对每个目标函数和约束条件单独进行并行化,增加了不必要的开销
正确的并行化实现方式
1. 整体评估函数并行化
更高效的方式是将整个评估函数并行化,而不是单独并行每个目标函数:
def _evaluate(self, X, out, *args, **kwargs):
# 将X转换为参数列表
params = [X[k] for k in range(len(X))]
# 并行计算所有个体的评估结果
results = pool.map(self.evaluate_individual, params)
# 解包结果
F = [r[0] for r in results]
G = [r[1] for r in results]
H = [r[2] for r in results]
# 正确设置输出形状
out["F"] = np.array(F)
out["G"] = np.array(G).T # 注意转置
out["H"] = np.array(H).T
2. 评估单个个体的函数
def evaluate_individual(self, x):
f1 = ((x[0] * ρ_coal + x[1] * ρ_pv + x[2] * ρ_wt + ...))
f2 = ((((1-eff1_a) + (1-eff1_b)) * (x[0] + x[1] + x[2]) + ...)
g1 = x[0] + x[1] + x[2] - 10.9
g2 = x[3] + x[4] + x[5] - 4.0
g3 = x[6] + x[7] + x[8] + x[9] - 9.2
g4 = x[10] + x[11] + x[12] - 5.5
h = x[0] + x[1] + x[2] + ... + x[12] - 22
return [f1, f2], [g1, g2, g3, g4], [h]
数组形状处理要点
pymoo对输出数组的形状有严格要求:
- 目标函数数组
F
:形状应为(n_individuals, n_objectives)
- 不等式约束数组
G
:形状应为(n_individuals, n_ieq_constr)
- 等式约束数组
H
:形状应为(n_individuals, n_eq_constr)
使用NumPy向量化运算
对于简单的目标函数和约束条件,使用NumPy的向量化运算通常比并行化更高效:
def _evaluate(self, X, out, *args, **kwargs):
# 目标函数1
f1 = (X[:,0]*ρ_coal + X[:,1]*ρ_pv + X[:,2]*ρ_wt + ...)
# 目标函数2
f2 = (((1-eff1_a)+(1-eff1_b))*(X[:,0]+X[:,1]+X[:,2]) + ...)
# 约束条件
g1 = X[:,0] + X[:,1] + X[:,2] - 10.9
g2 = X[:,3] + X[:,4] + X[:,5] - 4.0
g3 = X[:,6] + X[:,7] + X[:,8] + X[:,9] - 9.2
g4 = X[:,10] + X[:,11] + X[:,12] - 5.5
h = X.sum(axis=1) - 22
out["F"] = np.column_stack([f1, f2])
out["G"] = np.column_stack([g1, g2, g3, g4])
out["H"] = h.reshape(-1, 1)
注意事项
- 等式约束在进化算法中较难处理,建议尽可能转换为不等式约束
- 并行化会引入通信开销,对于简单计算可能得不偿失
- 确保所有约束条件的符号方向一致(通常为≤0)
通过以上方法,可以正确高效地实现pymoo多目标优化问题的并行化评估。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++026Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0279Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
159
2.01 K

deepin linux kernel
C
22
6

Ascend Extension for PyTorch
Python
42
74

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
522
53

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
946
556

React Native鸿蒙化仓库
C++
197
279

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
995
396

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
364
13

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
71