pymoo多目标优化问题并行化实现技巧
2025-07-01 15:22:36作者:胡唯隽
并行化评估函数的设计要点
在使用pymoo进行多目标优化时,当目标函数和约束条件计算量较大时,采用并行化评估可以显著提高优化效率。但在实现过程中需要注意几个关键点:
问题分析
在用户提供的代码中,主要存在两个问题:
- 输出数组形状不正确:
out["F"]和out["G"]的数组形状不符合pymoo的要求 - 并行化方式不够高效:对每个目标函数和约束条件单独进行并行化,增加了不必要的开销
正确的并行化实现方式
1. 整体评估函数并行化
更高效的方式是将整个评估函数并行化,而不是单独并行每个目标函数:
def _evaluate(self, X, out, *args, **kwargs):
# 将X转换为参数列表
params = [X[k] for k in range(len(X))]
# 并行计算所有个体的评估结果
results = pool.map(self.evaluate_individual, params)
# 解包结果
F = [r[0] for r in results]
G = [r[1] for r in results]
H = [r[2] for r in results]
# 正确设置输出形状
out["F"] = np.array(F)
out["G"] = np.array(G).T # 注意转置
out["H"] = np.array(H).T
2. 评估单个个体的函数
def evaluate_individual(self, x):
f1 = ((x[0] * ρ_coal + x[1] * ρ_pv + x[2] * ρ_wt + ...))
f2 = ((((1-eff1_a) + (1-eff1_b)) * (x[0] + x[1] + x[2]) + ...)
g1 = x[0] + x[1] + x[2] - 10.9
g2 = x[3] + x[4] + x[5] - 4.0
g3 = x[6] + x[7] + x[8] + x[9] - 9.2
g4 = x[10] + x[11] + x[12] - 5.5
h = x[0] + x[1] + x[2] + ... + x[12] - 22
return [f1, f2], [g1, g2, g3, g4], [h]
数组形状处理要点
pymoo对输出数组的形状有严格要求:
- 目标函数数组
F:形状应为(n_individuals, n_objectives) - 不等式约束数组
G:形状应为(n_individuals, n_ieq_constr) - 等式约束数组
H:形状应为(n_individuals, n_eq_constr)
使用NumPy向量化运算
对于简单的目标函数和约束条件,使用NumPy的向量化运算通常比并行化更高效:
def _evaluate(self, X, out, *args, **kwargs):
# 目标函数1
f1 = (X[:,0]*ρ_coal + X[:,1]*ρ_pv + X[:,2]*ρ_wt + ...)
# 目标函数2
f2 = (((1-eff1_a)+(1-eff1_b))*(X[:,0]+X[:,1]+X[:,2]) + ...)
# 约束条件
g1 = X[:,0] + X[:,1] + X[:,2] - 10.9
g2 = X[:,3] + X[:,4] + X[:,5] - 4.0
g3 = X[:,6] + X[:,7] + X[:,8] + X[:,9] - 9.2
g4 = X[:,10] + X[:,11] + X[:,12] - 5.5
h = X.sum(axis=1) - 22
out["F"] = np.column_stack([f1, f2])
out["G"] = np.column_stack([g1, g2, g3, g4])
out["H"] = h.reshape(-1, 1)
注意事项
- 等式约束在进化算法中较难处理,建议尽可能转换为不等式约束
- 并行化会引入通信开销,对于简单计算可能得不偿失
- 确保所有约束条件的符号方向一致(通常为≤0)
通过以上方法,可以正确高效地实现pymoo多目标优化问题的并行化评估。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
535
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178