pymoo多目标优化问题并行化实现技巧
2025-07-01 03:42:49作者:胡唯隽
并行化评估函数的设计要点
在使用pymoo进行多目标优化时,当目标函数和约束条件计算量较大时,采用并行化评估可以显著提高优化效率。但在实现过程中需要注意几个关键点:
问题分析
在用户提供的代码中,主要存在两个问题:
- 输出数组形状不正确:
out["F"]和out["G"]的数组形状不符合pymoo的要求 - 并行化方式不够高效:对每个目标函数和约束条件单独进行并行化,增加了不必要的开销
正确的并行化实现方式
1. 整体评估函数并行化
更高效的方式是将整个评估函数并行化,而不是单独并行每个目标函数:
def _evaluate(self, X, out, *args, **kwargs):
# 将X转换为参数列表
params = [X[k] for k in range(len(X))]
# 并行计算所有个体的评估结果
results = pool.map(self.evaluate_individual, params)
# 解包结果
F = [r[0] for r in results]
G = [r[1] for r in results]
H = [r[2] for r in results]
# 正确设置输出形状
out["F"] = np.array(F)
out["G"] = np.array(G).T # 注意转置
out["H"] = np.array(H).T
2. 评估单个个体的函数
def evaluate_individual(self, x):
f1 = ((x[0] * ρ_coal + x[1] * ρ_pv + x[2] * ρ_wt + ...))
f2 = ((((1-eff1_a) + (1-eff1_b)) * (x[0] + x[1] + x[2]) + ...)
g1 = x[0] + x[1] + x[2] - 10.9
g2 = x[3] + x[4] + x[5] - 4.0
g3 = x[6] + x[7] + x[8] + x[9] - 9.2
g4 = x[10] + x[11] + x[12] - 5.5
h = x[0] + x[1] + x[2] + ... + x[12] - 22
return [f1, f2], [g1, g2, g3, g4], [h]
数组形状处理要点
pymoo对输出数组的形状有严格要求:
- 目标函数数组
F:形状应为(n_individuals, n_objectives) - 不等式约束数组
G:形状应为(n_individuals, n_ieq_constr) - 等式约束数组
H:形状应为(n_individuals, n_eq_constr)
使用NumPy向量化运算
对于简单的目标函数和约束条件,使用NumPy的向量化运算通常比并行化更高效:
def _evaluate(self, X, out, *args, **kwargs):
# 目标函数1
f1 = (X[:,0]*ρ_coal + X[:,1]*ρ_pv + X[:,2]*ρ_wt + ...)
# 目标函数2
f2 = (((1-eff1_a)+(1-eff1_b))*(X[:,0]+X[:,1]+X[:,2]) + ...)
# 约束条件
g1 = X[:,0] + X[:,1] + X[:,2] - 10.9
g2 = X[:,3] + X[:,4] + X[:,5] - 4.0
g3 = X[:,6] + X[:,7] + X[:,8] + X[:,9] - 9.2
g4 = X[:,10] + X[:,11] + X[:,12] - 5.5
h = X.sum(axis=1) - 22
out["F"] = np.column_stack([f1, f2])
out["G"] = np.column_stack([g1, g2, g3, g4])
out["H"] = h.reshape(-1, 1)
注意事项
- 等式约束在进化算法中较难处理,建议尽可能转换为不等式约束
- 并行化会引入通信开销,对于简单计算可能得不偿失
- 确保所有约束条件的符号方向一致(通常为≤0)
通过以上方法,可以正确高效地实现pymoo多目标优化问题的并行化评估。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库
项目优选
收起
deepin linux kernel
C
24
8
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
278
暂无简介
Dart
639
145
Ascend Extension for PyTorch
Python
202
219
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
React Native鸿蒙化仓库
JavaScript
246
316
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
213
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
630
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
77
100