OpenCV图像阈值处理技术详解:从基础到Otsu算法
2025-06-04 16:10:27作者:董宙帆
前言
图像阈值处理是计算机视觉中最基础也是最重要的预处理技术之一。通过将灰度图像转换为二值图像,我们可以简化后续的图像分析过程。本文将深入探讨OpenCV中的各种阈值处理方法,帮助读者掌握这一关键技术。
一、简单阈值处理
简单阈值处理是最基础的二值化方法,其核心思想是:对于图像中的每个像素,如果其值大于阈值,则赋予一个新值(通常是白色),否则赋予另一个值(通常是黑色)。
1.1 阈值处理类型
OpenCV提供了五种基本的阈值处理类型:
-
THRESH_BINARY:标准二值化
- 公式:dst(x,y) = maxVal if src(x,y)>thresh else 0
-
THRESH_BINARY_INV:反向二值化
- 公式:dst(x,y) = 0 if src(x,y)>thresh else maxVal
-
THRESH_TRUNC:截断处理
- 公式:dst(x,y) = threshold if src(x,y)>thresh else src(x,y)
-
THRESH_TOZERO:低于阈值归零
- 公式:dst(x,y) = src(x,y) if src(x,y)>thresh else 0
-
THRESH_TOZERO_INV:高于阈值归零
- 公式:dst(x,y) = 0 if src(x,y)>thresh else src(x,y)
1.2 代码实现示例
import cv2
import numpy as np
from matplotlib import pyplot as plt
# 读取图像并转换为灰度
img = cv2.imread('images/test.png', 0)
# 应用不同阈值处理方法
ret, thresh1 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
ret, thresh2 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY_INV)
ret, thresh3 = cv2.threshold(img, 127, 255, cv2.THRESH_TRUNC)
ret, thresh4 = cv2.threshold(img, 127, 255, cv2.THRESH_TOZERO)
ret, thresh5 = cv2.threshold(img, 127, 255, cv2.THRESH_TOZERO_INV)
# 可视化结果
titles = ['原图', '标准二值化', '反向二值化', '截断处理', '低于阈值归零', '高于阈值归零']
images = [img, thresh1, thresh2, thresh3, thresh4, thresh5]
plt.figure(figsize=(12, 8))
for i in range(6):
plt.subplot(2, 3, i+1)
plt.imshow(images[i], 'gray')
plt.title(titles[i])
plt.axis('off')
plt.show()
二、自适应阈值处理
当图像不同区域光照条件不均匀时,全局阈值处理效果往往不佳。自适应阈值处理通过为图像的不同区域计算不同的阈值来解决这个问题。
2.1 自适应方法
OpenCV提供两种自适应阈值计算方法:
-
ADAPTIVE_THRESH_MEAN_C:阈值取邻域均值
- 计算邻域窗口内像素的平均值作为阈值
-
ADAPTIVE_THRESH_GAUSSIAN_C:阈值取邻域加权均值
- 计算邻域窗口内像素的高斯加权和作为阈值
2.2 参数说明
- blockSize:邻域大小(必须为奇数)
- C:从计算出的阈值中减去的常数(用于微调)
2.3 代码实现
img = cv2.imread('images/test.jpg', 0)
img = cv2.medianBlur(img, 5) # 中值滤波去噪
# 全局阈值处理
ret, th1 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
# 自适应阈值处理
th2 = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_MEAN_C,
cv2.THRESH_BINARY, 11, 2)
th3 = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY, 11, 2)
# 可视化比较
titles = ['原图', '全局阈值(v=127)', '自适应均值阈值', '自适应高斯阈值']
images = [img, th1, th2, th3]
plt.figure(figsize=(10, 8))
for i in range(4):
plt.subplot(2, 2, i+1)
plt.imshow(images[i], 'gray')
plt.title(titles[i])
plt.axis('off')
plt.show()
三、Otsu二值化算法
Otsu算法是一种自动确定最佳阈值的算法,特别适用于双峰图像(即图像直方图有两个明显峰值的情况)。
3.1 算法原理
Otsu算法通过最小化类内方差来寻找最佳阈值。具体步骤:
- 计算图像直方图并归一化
- 遍历所有可能的阈值t
- 计算以t为阈值分割的两类像素的类内方差
- 选择使类内方差最小的t作为最佳阈值
3.2 OpenCV实现
img = cv2.imread('images/test.png', 0)
# 全局阈值处理
ret1, th1 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
# 直接Otsu处理
ret2, th2 = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
# 高斯滤波后Otsu处理
blur = cv2.GaussianBlur(img, (5, 5), 0)
ret3, th3 = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
# 可视化比较
images = [img, 0, th1,
img, 0, th2,
blur, 0, th3]
titles = ['原图(含噪)', '直方图', '全局阈值(v=127)',
'原图(含噪)', '直方图', "Otsu阈值",
'高斯滤波后', '直方图', "Otsu阈值"]
plt.figure(figsize=(12, 12))
for i in range(3):
plt.subplot(3, 3, i*3+1), plt.imshow(images[i*3], 'gray')
plt.title(titles[i*3]), plt.axis('off')
plt.subplot(3, 3, i*3+2), plt.hist(images[i*3].ravel(), 256)
plt.title(titles[i*3+1]), plt.axis('off')
plt.subplot(3, 3, i*3+3), plt.imshow(images[i*3+2], 'gray')
plt.title(titles[i*3+2]), plt.axis('off')
plt.show()
3.3 手动实现Otsu算法
为了深入理解Otsu算法,我们可以手动实现其核心逻辑:
def otsu_threshold(img):
# 计算归一化直方图
hist = cv2.calcHist([img], [0], None, [256], [0, 256])
hist_norm = hist.ravel() / hist.sum()
# 计算累积分布函数
Q = hist_norm.cumsum()
bins = np.arange(256)
fn_min = np.inf
optimal_thresh = -1
for t in range(1, 256):
# 分割两类
p1, p2 = np.hsplit(hist_norm, [t])
q1, q2 = Q[t], Q[255] - Q[t]
if q1 < 1.e-6 or q2 < 1.e-6:
continue
# 计算类均值
b1, b2 = np.hsplit(bins, [t])
m1 = np.sum(p1 * b1) / q1
m2 = np.sum(p2 * b2) / q2
# 计算类方差
v1 = np.sum(((b1 - m1)**2) * p1) / q1
v2 = np.sum(((b2 - m2)**2) * p2) / q2
# 计算目标函数
fn = v1 * q1 + v2 * q2
if fn < fn_min:
fn_min = fn
optimal_thresh = t
return optimal_thresh
四、应用场景与选择建议
- 简单阈值处理:适用于光照均匀、对比度高的图像
- 自适应阈值处理:适用于光照不均匀的图像,如文档扫描、车牌识别等
- Otsu算法:适用于双峰直方图的图像,在不知道合适阈值时特别有用
五、性能优化建议
- 对于大图像,可以先进行降采样处理
- 结合高斯滤波等预处理可以提高阈值处理效果
- 自适应阈值处理的blockSize应根据目标大小选择
结语
本文详细介绍了OpenCV中的各种图像阈值处理技术,从基础的全局阈值到自适应阈值,再到Otsu自动阈值算法。掌握这些技术将为后续的图像分割、特征提取等高级计算机视觉任务奠定坚实基础。建议读者在实际项目中根据具体需求选择合适的阈值处理方法,并尝试调整参数以获得最佳效果。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Jetson TX2开发板官方资源完全指南:从入门到精通 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
192
212
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
297
111
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.68 K
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
243
316
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
66
96
暂无简介
Dart
632
143