MoveNet PyTorch 项目教程
2026-01-17 09:19:10作者:庞队千Virginia
项目介绍
MoveNet 是一个超快速且精确的模型,用于检测人体的17个关键点。本项目是 Google MoveNet 的 PyTorch 实现,包含了训练代码和预训练模型。Google 最近发布了预训练模型(tfjs 或 tflite),但这些模型不能直接用于 PyTorch。
项目快速启动
环境配置
首先,确保你安装了合适的 Python 3.x 环境,并安装了最新版本的 PyTorch。推荐使用 Conda 进行环境管理。
conda create -n movenet_env python=3.8
conda activate movenet_env
pip install torch==1.9.0
克隆项目
克隆项目到本地:
git clone https://github.com/fire717/movenet.pytorch.git
cd movenet.pytorch
运行示例
项目提供了三个示例应用和一个 Jupyter Notebook,用于展示 MoveNet 模型的使用。以下是运行图像示例的命令:
python image_demo.py --image_dir /path/to/images --output_dir /path/to/output
应用案例和最佳实践
图像关键点检测
使用 MoveNet 模型进行图像关键点检测,并将检测结果叠加在原图像上。
import torch
from movenet import MoveNet
model = MoveNet()
model.load_state_dict(torch.load('path/to/pretrained/model'))
model.eval()
# 假设你有一个图像张量 image_tensor
with torch.no_grad():
keypoints = model(image_tensor)
实时视频关键点检测
结合摄像头,实现实时视频流中的关键点检测。
import cv2
import torch
from movenet import MoveNet
model = MoveNet()
model.load_state_dict(torch.load('path/to/pretrained/model'))
model.eval()
cap = cv2.VideoCapture(0)
while True:
ret, frame = cap.read()
if not ret:
break
# 预处理图像
image_tensor = preprocess(frame)
with torch.no_grad():
keypoints = model(image_tensor)
# 在图像上绘制关键点
frame = draw_keypoints(frame, keypoints)
cv2.imshow('MoveNet', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
典型生态项目
TinyNeuralNetwork
TinyNeuralNetwork 是一个用于解决 PyTorch 模型转换为 TensorFlow Lite 模型时遇到的问题的项目。通过 TinyNeuralNetwork,可以将 PyTorch 模型直接转换为 TFLite 模型,便于在移动设备上部署。
git clone https://github.com/TinyNeuralNetwork/TinyNeuralNetwork.git
cd TinyNeuralNetwork
pip install .
TensorFlow Lite Android Demo
Google 发布了 TensorFlow Lite 的 Android 演示应用,其中包括了 MoveNet 模型。通过比较自己的实现与原版实现的速度,可以更好地理解模型的部署。
git clone https://github.com/tensorflow/examples.git
cd examples/lite/examples/pose_estimation/android
通过以上步骤,你可以快速启动 MoveNet PyTorch 项目,并了解其在图像和视频关键点检测中的应用。同时,结合 TinyNeuralNetwork 和 TensorFlow Lite Android Demo,可以进一步扩展和优化模型的部署。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355