EagerPy 开源项目教程
2024-09-21 00:37:48作者:郦嵘贵Just
1. 项目介绍
EagerPy 是一个 Python 框架,它允许您编写可以原生与 PyTorch、TensorFlow Eager、JAX 和 NumPy 兼容的代码。通过统一这些框架的接口,EagerPy 使得开发者能够用同一份代码在不同的框架之间无缝切换,极大提高了代码的可复用性和开发效率。
EagerPy 的主要特点包括:
- 原生性能:EagerPy 操作直接转换为相应框架的原生操作。
- 完全链式调用:所有功能都可以作为张量对象的方法或 EagerPy 函数使用。
- 类型检查:利用 EagerPy 的类型注解,在代码运行前捕捉潜在错误。
2. 项目快速启动
在开始使用 EagerPy 之前,确保您的环境中已安装了 Python 3.6 或更高版本。以下是通过 PyPI 安装 EagerPy 的步骤:
python3 -m pip install eagerpy
安装完成后,您可以通过以下示例代码测试 EagerPy 是否正确安装并运行:
import eagerpy as ep
import torch
import tensorflow as tf
import jax
import numpy as np
# 使用 EagerPy 创建一个张量
x = ep.astensor([1, 2, 3])
# 计算 L2 范数
result = ep.norm(x, p=2)
print("L2 Norm:", result)
3. 应用案例和最佳实践
3.1 跨框架运算
EagerPy 允许开发者用相同的代码在不同框架间进行运算。以下是一个使用 EagerPy 计算不同框架张量 L2 范数的例子:
def compute_l2_norm(x):
return ep.norm(x, p=2)
# PyTorch 张量
torch_tensor = torch.tensor([1, 2, 3])
print("PyTorch L2 Norm:", compute_l2_norm(torch_tensor))
# TensorFlow 张量
tf_tensor = tf.constant([1, 2, 3])
print("TensorFlow L2 Norm:", compute_l2_norm(tf_tensor))
# JAX 数组
jax_array = jax.numpy.array([1, 2, 3])
print("JAX L2 Norm:", compute_l2_norm(jax_array))
# NumPy 数组
numpy_array = np.array([1, 2, 3])
print("NumPy L2 Norm:", compute_l2_norm(numpy_array))
3.2 自定义函数
您还可以编写在多个框架中 transparently 工作的自定义函数:
def my_universal_function(a, b, c):
a, b, c = ep.astensors(a, b, c)
result = (a + b * c)**2
return result
# 使用 PyTorch 张量
a = torch.tensor([1, 2])
b = torch.tensor([3, 4])
c = torch.tensor([5, 6])
print("My Universal Function (PyTorch):", my_universal_function(a, b, c))
# 使用 NumPy 数组
a = np.array([1, 2])
b = np.array([3, 4])
c = np.array([5, 6])
print("My Universal Function (NumPy):", my_universal_function(a, b, c))
4. 典型生态项目
EagerPy 已经被用于多个开源项目中,以下是一些典型案例:
- Foolbox:Foolbox 是一个流行的对抗性攻击库,最新版本使用 EagerPy 重写,以实现 PyTorch、TensorFlow 和 JAX 上的原生性能。
- GUDHI:EagerPy 被用于减少代码重复,并在不同框架之间比较性能。
通过上述案例,可以看出 EagerPy 在多框架统一编程和性能优化方面的实用性和价值。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
暂无简介
Dart
614
140
Ascend Extension for PyTorch
Python
167
187
React Native鸿蒙化仓库
JavaScript
240
315
仓颉编译器源码及 cjdb 调试工具。
C++
126
855
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
373
3.18 K
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
260
92
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
475
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
255