Eureka 项目使用教程
1. 项目介绍
Eureka 是一个由 eureka-research 团队开发的开源项目,旨在通过编码大型语言模型(LLMs)来实现人类级别的奖励设计。该项目在 ICLR 2024 上发布,主要利用 LLMs(如 GPT-4)的零样本生成、代码编写和上下文改进能力,进行上下文进化优化,从而设计出高效的奖励函数。这些奖励函数可以用于强化学习,以获取复杂的技能。
Eureka 在多个开源强化学习环境中表现出色,超越了人类专家设计的奖励函数,平均提升了 52% 的性能。此外,Eureka 还支持从人类反馈中进行强化学习(RLHF),进一步提高奖励函数的质量和安全性。
2. 项目快速启动
环境准备
Eureka 需要 Python 3.8 或更高版本。建议使用 Conda 创建一个新的虚拟环境:
conda create -n eureka python=3.8
conda activate eureka
安装 IsaacGym
Eureka 依赖于 IsaacGym,请按照以下步骤安装:
# 下载 IsaacGym 预览版 4
tar -xvf IsaacGym_Preview_4_Package.tar.gz
cd isaacgym/python
pip install -e .
# 测试安装
python examples/joint_monkey.py
安装 Eureka
克隆 Eureka 仓库并安装:
git clone https://github.com/eureka-research/Eureka.git
cd Eureka
pip install -e .
cd isaacgymenvs
pip install -e .
cd ../rl_games
pip install -e .
配置 OpenAI API
Eureka 使用 OpenAI API 进行语言模型查询,需要设置 API 密钥:
export OPENAI_API_KEY="YOUR_API_KEY"
运行 Eureka
导航到 Eureka 目录并运行以下命令:
python eureka.py env=[environment] iteration=[num_iterations] sample=[num_samples]
例如:
python eureka.py env=shadow_hand sample=4 iteration=2 model=gpt-4-0314
3. 应用案例和最佳实践
案例1:五指机械手笔旋转
Eureka 成功应用于模拟五指机械手的笔旋转任务。通过 Eureka 生成的奖励函数,机械手能够以人类速度灵活地旋转笔。
案例2:多样化强化学习环境
Eureka 在 29 个开源强化学习环境中进行了测试,涵盖 10 种不同的机器人形态。结果显示,Eureka 在 83% 的任务中超越了人类专家设计的奖励函数。
最佳实践
- 上下文优化:利用 LLMs 的上下文改进能力,不断优化奖励函数。
- 人类反馈集成:通过 RLHF 方法,将人类反馈融入奖励设计,提高奖励函数的质量和安全性。
4. 典型生态项目
IsaacGym
IsaacGym 是 NVIDIA 开发的高性能模拟平台,广泛用于机器人和强化学习研究。Eureka 依赖于 IsaacGym 进行环境模拟和训练。
rl_games
rl_games 是一个开源的强化学习训练框架,Eureka 使用 rl_games 进行策略训练和评估。
OpenAI API
Eureka 使用 OpenAI API 进行语言模型查询,依赖于 GPT-4 等大型语言模型生成和优化奖励函数。
通过以上模块的介绍和实践,您可以快速上手并深入了解 Eureka 项目。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0115
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00