Craves.ai 机器人手臂姿态估计数据集详解
2025-06-19 12:19:49作者:苗圣禹Peter
项目背景
Craves.ai 是一个专注于机器人视觉与控制的创新项目,其核心目标是通过计算机视觉技术实现对机器人手臂的精确姿态估计。为了实现这一目标,项目团队精心构建了多个高质量的数据集,包含合成数据和真实场景数据,为机器人手臂姿态估计模型的训练与验证提供了坚实基础。
数据集概览
1. 合成数据集(虚拟数据集)
技术特点:
- 使用 Unreal Engine 4 和 UnrealCV 工具生成
- 包含 5,000 张合成图像
- 采用随机化的相机参数、光照条件、手臂姿态和背景增强
- 训练集/验证集划分:4,500/500
优势:
- 数据规模可控
- 标注精度高(自动生成)
- 场景多样性可通过参数调节
2. 真实数据集
2.1 实验室数据集
技术特点:
- 使用 720P 网络摄像头采集
- 原始帧数超过 20,000 帧
- 精选 428 个关键帧进行人工标注
- 包含干扰物(彩色盒子、骰子、球等)
应用价值:
- 模拟真实实验室环境
- 包含复杂背景干扰
- 适合测试模型鲁棒性
2.2 YouTube 数据集
技术特点:
- 从 YouTube 爬取的 109 个 OWI-535 机械臂视频
- 精选 275 帧进行人工标注
- 仅提供 2D 关键点标注
独特价值:
- 场景高度多样化
- 包含改装机械臂(几何约束可能不成立)
- 反映真实世界应用场景
数据集结构详解
虚拟与实验室数据集结构
数据集根目录
│ readme.txt
│
├───angles // 电机角度真值
│
├───FusionCameraActor3_2
│ ├───caminfo // 相机参数真值
│ ├───lit // RGB 图像
│ ├───seg // 分割图像
│
├───joint // 3D 空间关键点位置
│
......
技术要点:
- 提供完整的 3D 标注信息
- 包含相机参数,支持 3D 到 2D 的投影计算
- 电机角度信息可用于运动学分析
YouTube 数据集结构
数据集根目录
│
├───d3_preds // 2D 关键点标注真值
│
├───imgs // RGB 图像
│
......
技术要点:
- 仅提供 2D 标注
- 适用于 2D 姿态估计任务
- 图像来源多样,场景复杂
数据加载与处理
项目提供了专业的数据加载脚本,主要处理流程包括:
-
数据读取:
- 对于 YouTube 数据集,直接加载 2D 标注
- 对于虚拟和实验室数据集,通过相机参数将 3D 标注投影到 2D 图像空间
-
坐标转换:
joint_2d, vertex_2d, img_path = get_joint_vertex_2d(self.dataset, ids, self.cam_name, self.actor_name)- 使用 UnrealCV 提供的相机类实现 3D 到 2D 的精确投影
-
数据增强:
- 随机位移
- 缩放变换
- 颜色偏移
- 旋转变换
-
热图生成:
- 基于 2D 标注生成 17 通道热图
- 支持模型训练中的监督学习
评估指标与结果
2D 姿态评估
采用 PCK@0.2 指标(Percentage of Correct Keypoints at 0.2),该指标衡量关键点预测位置与真实位置的距离在图像尺寸 20% 范围内的比例。
典型结果:
- 合成数据测试集:98.7%
- 实验室测试集:92.3%
- YouTube 测试集:85.6%
3D 姿态评估
计算四个关节角的平均绝对误差:
实验室数据集表现:
- 平均角度误差:4.8 度
- 证明了模型在真实场景中的有效性
应用建议
-
模型训练:
- 建议先在合成数据上预训练
- 然后使用实验室数据进行微调
- 最后用 YouTube 数据测试泛化能力
-
领域适应:
- 利用提供的未标注实验室图像进行半监督学习
- 可结合背景替换技术增强数据多样性
-
评估策略:
- 2D 任务关注 PCK 指标
- 3D 任务关注关节角度误差
- 建议同时考虑两种指标的综合评估
技术展望
Craves.ai 数据集为机器人手臂姿态估计研究提供了宝贵资源,未来可扩展方向包括:
- 增加更多机械臂型号的数据
- 引入动态视频序列标注
- 开发多模态数据集(如结合深度信息)
- 构建更复杂的工业场景数据集
该数据集不仅适用于学术研究,也可为工业应用中的机器人视觉系统开发提供有力支持。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248