React Awesome Query Builder:构建强大查询的利器
项目介绍
React Awesome Query Builder 是一个用户友好的 React 组件,旨在帮助开发者轻松构建复杂的查询(过滤器)。该项目灵感来源于 jQuery QueryBuilder,并集成了多个优秀的 UI 框架,如 Ant Design、Material-UI、Bootstrap 和 Fluent UI。通过这个组件,开发者可以快速创建高度可配置的查询界面,满足各种复杂的业务需求。
项目技术分析
技术栈
- React:作为前端框架,提供了组件化的开发模式。
- Ant Design、Material-UI、Bootstrap、Fluent UI:提供了丰富的 UI 组件库,支持多种主题风格。
- TypeScript:提供了类型检查和更好的代码提示,增强了代码的可维护性。
- pnpm:作为包管理工具,提供了更高效的依赖管理。
核心功能
- 高度可配置:支持自定义字段、类型、操作符、函数、小部件等。
- 复杂类型支持:支持简单类型(如字符串、数字、布尔值、日期/时间、列表)和复杂类型(如结构体、数组)。
- 聚合查询:支持类似“COUNT OF users WHERE (role == 'Manager' AND department == 'Development') > 5”的查询。
- 字段比较:支持字段之间的比较,包括二元运算符(== != < >)、一元运算符(如 is null)、between 运算符和复杂运算符(如 proximity)。
- 函数支持:支持在查询的左侧和右侧使用函数,并支持函数的嵌套。
- Ternary 模式:支持 if-then-else 逻辑。
- 导出与导入:支持导出为 MongoDb、SQL、JsonLogic、SpEL、ElasticSearch 格式,并支持从 JsonLogic 和 SpEL 导入。
- 拖拽排序:支持规则和规则组的拖拽排序。
- 保存与加载:支持将查询值和配置保存到服务器并从服务器加载。
- 多主题支持:支持 Ant Design、Material-UI、Bootstrap、Fluent UI 和 vanilla 主题。
项目及技术应用场景
应用场景
- 数据过滤:在数据展示和分析系统中,用户可以通过该组件快速构建复杂的过滤条件,实现数据的精准筛选。
- 查询构建器:在后台管理系统中,开发者可以使用该组件为用户提供一个可视化的查询构建器,帮助用户生成复杂的查询语句。
- 规则引擎:在规则引擎系统中,该组件可以作为规则编辑器,帮助用户定义和编辑复杂的业务规则。
技术应用
- 前端开发:适用于需要构建复杂查询界面的前端项目,特别是那些需要高度可配置和用户友好的查询构建器。
- 后端集成:支持将前端构建的查询导出为后端可识别的格式(如 SQL、MongoDb 查询),实现前后端的无缝集成。
项目特点
1. 高度可配置
React Awesome Query Builder 提供了丰富的配置选项,开发者可以根据业务需求自定义字段、类型、操作符、函数等,满足各种复杂的查询需求。
2. 多 UI 框架支持
项目集成了多个流行的 UI 框架,如 Ant Design、Material-UI、Bootstrap 和 Fluent UI,开发者可以根据项目需求选择合适的 UI 风格,实现一致的用户体验。
3. 强大的导出与导入功能
支持将构建的查询导出为多种格式(如 SQL、MongoDb、JsonLogic 等),并支持从 JsonLogic 和 SpEL 导入,方便与其他系统集成。
4. 拖拽排序与 Ternary 模式
支持规则和规则组的拖拽排序,方便用户调整查询逻辑;Ternary 模式支持 if-then-else 逻辑,增强了查询的灵活性。
5. 多语言支持
项目支持国际化,开发者可以根据需要配置多语言支持,满足全球用户的需求。
结语
React Awesome Query Builder 是一个功能强大且高度可配置的查询构建器组件,适用于需要构建复杂查询界面的前端项目。通过集成多个优秀的 UI 框架,开发者可以轻松实现用户友好的查询构建体验。无论是数据过滤、查询构建器还是规则引擎,React Awesome Query Builder 都能为你的项目提供强大的支持。
立即体验:React Awesome Query Builder 在线演示
GitHub 仓库:React Awesome Query Builder 源码
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C033
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00