Kubeflow KFServing 实现基于 KEDA 的 LLM 推理自动扩缩容方案
2025-06-16 11:41:14作者:翟萌耘Ralph
在当今大规模语言模型(LLM)应用场景中,高效的推理服务自动扩缩容能力至关重要。传统的基于请求级别的扩缩容指标(如 Knative 提供的)往往难以满足 LLM 推理的特殊需求,因为 LLM 推理是在 token 级别进行的,需要更精细的监控指标来指导扩缩容决策。
技术挑战与解决方案
LLM 推理服务具有独特的性能特征,传统的 HTTP 请求级别指标无法准确反映实际负载情况。主要面临以下挑战:
- token 级别的处理特性:LLM 推理不是简单的请求-响应模式,而是涉及输入 token 处理和输出 token 流式生成
 - 复杂的性能指标:需要综合考虑首 token 延迟、输出 token 生成速度、总体延迟和吞吐量等指标
 - 能效考量:在大规模部署时,还需要考虑能耗指标以实现绿色计算
 
KFServing 团队提出的解决方案是原生集成 KEDA(Kubernetes Event-driven Autoscaling),通过 Prometheus 指标实现细粒度的自动扩缩容。这一方案具有以下技术优势:
核心监控指标体系
为实现有效的 LLM 推理扩缩容,需要建立以下关键性能指标:
- 首 Token 时间(TTFT):衡量用户等待第一个响应 token 的时间,直接影响交互体验
 - 输出 Token 时间(TPOT):每个输出 token 的生成时间,决定用户感知的响应速度
 - 总体延迟:完整响应生成时间,计算公式为 TTFT + TPOT × 输出 token 数量
 - 吞吐量:系统每秒能够处理的总输出 token 数
 - 能耗指标:通过 Kepler 项目提供的容器级能耗数据
 
架构设计与实现
KFServing 通过两种部署模式支持 KEDA 集成:
1. Serverless 模式
利用 Knative 社区正在开发的 serving-keda 扩展,实现基于 KEDA 的 serverless 扩缩容。这种模式下,KFServing 可以:
- 动态调整副本数以响应 token 吞吐量变化
 - 根据能耗指标实现能效优化的扩缩容
 - 提供细粒度的性能与成本平衡
 
2. 原生部署模式
对于不使用 Knative 的原始部署,KFServing 控制器直接管理 KEDA 的 ScalerObject 资源。用户可以通过 InferenceService CRD 指定扩缩容查询指标:
apiVersion: "serving.kserve.io/v1beta1"
kind: "InferenceService"
spec:
  predictor:
    scaleQuery: "average_token_throughput_per_second[1m]"
    scaleMetric: custom
    maxReplicas: 10
    minReplicas: 1
对应的 KEDA ScaleObject 配置示例:
apiVersion: keda.sh/v1alpha1
kind: ScaleObject
spec:
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
  triggers:
    - type: prometheus
      metadata:
        metricName: average_token_per_second
        query: average_token_per_second[1m]
        threshold: "500"
技术价值与未来展望
这一集成方案为 LLM 推理服务带来了显著的改进:
- 精准扩缩容:基于实际 token 处理能力而非简单请求数进行决策
 - 能效优化:结合 Kepler 的能耗数据,实现绿色计算
 - 灵活配置:支持用户自定义 Prometheus 查询和扩缩容阈值
 - 统一体验:在 serverless 和原生部署模式下提供一致的扩缩容能力
 
未来,该方案还可以进一步扩展支持动态批处理大小调整、多指标复合决策等高级功能,为生产环境的 LLM 服务提供更强大的自动扩缩容能力。
这一创新已被合并到 KFServing 0.15 版本中,为社区提供了开箱即用的 LLM 推理自动扩缩容解决方案。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
272
2.56 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
564
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
231
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
仓颉编译器源码及 cjdb 调试工具。
C++
118
95
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
444