Kubernetes资源监控优化:Grafana仪表盘精准过滤非运行态Pod指标
2025-06-27 09:50:43作者:史锋燃Gardner
在Kubernetes集群监控实践中,准确反映运行中Pod的资源使用情况是运维团队的核心需求。本文将深入分析如何优化Grafana仪表盘中的资源请求/限制指标计算逻辑,确保其仅统计处于运行状态的Pod。
问题背景
传统Kubernetes监控仪表盘在计算资源请求(request)和限制(limit)时,通常会直接聚合kube_pod_container_resource_requests和kube_pod_container_resource_limits指标。然而这种方式存在一个潜在问题:这些指标会包含所有状态的Pod(包括已终止、Pending或失败的Pod),导致资源使用量统计失真。
技术原理
Kubernetes的Pod生命周期包含多个阶段:
- Pending:调度中
- Running:正常运行
- Succeeded:成功终止
- Failed:异常终止
- Unknown:状态未知
通过kube_pod_status_phase指标可以获取Pod的当前状态,其中phase="Running"标签专门标识运行中的Pod。将这一状态信息与资源指标关联,即可实现精准过滤。
解决方案
核心优化逻辑
原始查询语句:
sum(kube_pod_container_resource_requests{namespace=~"$namespace", resource="cpu", cluster="$cluster"})
优化后的查询通过向量匹配实现状态过滤:
sum(
kube_pod_container_resource_requests{namespace=~"$namespace", resource="cpu"}
* on(namespace, pod) group_left()
(sum(kube_pod_status_phase{phase="Running", cluster="$cluster"}) by (pod, namespace) == 1)
)
该查询执行以下操作:
- 通过
kube_pod_status_phase{phase="Running"}筛选运行中Pod - 使用
on(namespace, pod)指定匹配维度 group_left()保留左侧指标的所有标签==1确保只匹配唯一运行状态
多维度适配
同样的优化原则适用于:
- 内存资源请求/限制
- CPU资源请求/限制
- 临时存储等其它资源类型
示例内存限制查询:
sum(
kube_pod_container_resource_limits{namespace=~"$namespace", resource="memory"}
* on(namespace, pod) group_left()
(sum(kube_pod_status_phase{phase="Running", cluster="$cluster"}) by (pod, namespace) == 1)
)
进阶优化
针对Pod重启场景,建议同时采用以下策略:
- 在容器级指标(如container_cpu_usage_seconds_total)中加入
id标签分组 - 设置合理的指标保留周期
- 结合Pod重启次数指标进行异常检测
实施效果
经过优化后的仪表盘将:
- 准确反映实际运行的资源负载
- 避免已终止Pod造成的统计干扰
- 提供更精确的容量规划依据
- 减少监控系统的误报警
最佳实践建议
- 对于生产环境,建议对所有资源类指标都添加运行状态过滤
- 在重要看板中添加Pod状态分布的可视化组件
- 定期验证指标过滤逻辑的有效性
- 结合HPA指标进行综合监控分析
通过这种精细化的监控策略,运维团队可以获得更准确的资源使用洞察,为集群优化和扩容决策提供可靠依据。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
404
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355