Kubernetes资源监控优化:Grafana仪表盘精准过滤非运行态Pod指标
2025-06-27 06:33:19作者:史锋燃Gardner
在Kubernetes集群监控实践中,准确反映运行中Pod的资源使用情况是运维团队的核心需求。本文将深入分析如何优化Grafana仪表盘中的资源请求/限制指标计算逻辑,确保其仅统计处于运行状态的Pod。
问题背景
传统Kubernetes监控仪表盘在计算资源请求(request)和限制(limit)时,通常会直接聚合kube_pod_container_resource_requests和kube_pod_container_resource_limits指标。然而这种方式存在一个潜在问题:这些指标会包含所有状态的Pod(包括已终止、Pending或失败的Pod),导致资源使用量统计失真。
技术原理
Kubernetes的Pod生命周期包含多个阶段:
- Pending:调度中
- Running:正常运行
- Succeeded:成功终止
- Failed:异常终止
- Unknown:状态未知
通过kube_pod_status_phase指标可以获取Pod的当前状态,其中phase="Running"标签专门标识运行中的Pod。将这一状态信息与资源指标关联,即可实现精准过滤。
解决方案
核心优化逻辑
原始查询语句:
sum(kube_pod_container_resource_requests{namespace=~"$namespace", resource="cpu", cluster="$cluster"})
优化后的查询通过向量匹配实现状态过滤:
sum(
kube_pod_container_resource_requests{namespace=~"$namespace", resource="cpu"}
* on(namespace, pod) group_left()
(sum(kube_pod_status_phase{phase="Running", cluster="$cluster"}) by (pod, namespace) == 1)
)
该查询执行以下操作:
- 通过
kube_pod_status_phase{phase="Running"}筛选运行中Pod - 使用
on(namespace, pod)指定匹配维度 group_left()保留左侧指标的所有标签==1确保只匹配唯一运行状态
多维度适配
同样的优化原则适用于:
- 内存资源请求/限制
- CPU资源请求/限制
- 临时存储等其它资源类型
示例内存限制查询:
sum(
kube_pod_container_resource_limits{namespace=~"$namespace", resource="memory"}
* on(namespace, pod) group_left()
(sum(kube_pod_status_phase{phase="Running", cluster="$cluster"}) by (pod, namespace) == 1)
)
进阶优化
针对Pod重启场景,建议同时采用以下策略:
- 在容器级指标(如container_cpu_usage_seconds_total)中加入
id标签分组 - 设置合理的指标保留周期
- 结合Pod重启次数指标进行异常检测
实施效果
经过优化后的仪表盘将:
- 准确反映实际运行的资源负载
- 避免已终止Pod造成的统计干扰
- 提供更精确的容量规划依据
- 减少监控系统的误报警
最佳实践建议
- 对于生产环境,建议对所有资源类指标都添加运行状态过滤
- 在重要看板中添加Pod状态分布的可视化组件
- 定期验证指标过滤逻辑的有效性
- 结合HPA指标进行综合监控分析
通过这种精细化的监控策略,运维团队可以获得更准确的资源使用洞察,为集群优化和扩容决策提供可靠依据。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
702
166
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
680
React Native鸿蒙化仓库
JavaScript
278
329
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1