使用`academictwitteR`轻松访问Twitter学术研究API
在数据科学和社交媒体研究中,Twitter的数据是一块未被完全发掘的金矿。随着academictwitteR的到来,这个宝藏变得更加容易挖掘。这个开源R包提供了一种高效的方法,让学者和研究人员能够利用Twitter的学术研究产品轨道v2 API来获取有价值的信息。
项目简介
academictwitteR是R社区的瑰宝,它专为学术界设计,旨在简化从Twitter提取大量数据的过程。由于Twitter API的变化,此项目已被存档,但是其源代码仍可作为一个宝贵的资源用于学习和参考。这个包允许用户以R的优雅方式收集和处理推文,并将其转化为可供分析的结构化数据。
技术分析
该包的核心功能get_all_tweets()是一个强大的工具,它可以按照指定的查询条件或者特定用户的推文进行数据采集。配合set_bearer()函数,可以轻松管理认证凭据,确保安全操作。此外,数据存储选项允许用户将结果保存为.rds文件或JSON文件,方便后期数据分析。
academictwitteR还提供了中断和继续数据收集的功能,这在处理大量数据时非常有用。bind_tweets()则可以将分段收集的JSON数据整合成一个便于分析的数据帧。
应用场景
学术研究者可以使用academictwitteR来探索社会趋势、舆论动态,甚至分析特定事件的影响。例如,监测并分析#BlackLivesMatter运动期间的推文,以理解公众情绪和讨论热点。此外,通过跟踪特定用户的推文,可以深入了解个人或群体的观点变化。
项目特点
- 易用性:简单的API调用和内置的数据存储选项使数据收集变得简单。
- 灵活性:支持自定义查询、时间范围和用户筛选。
- 安全:安全的认证管理避免了敏感信息硬编码。
- 适应性:中断和继续的功能适合长时间或大型数据集的收集。
- 完整性:支持多种数据格式,包括tidyverse友好的格式。
安装与启动
要开始使用,只需在R环境中运行以下命令:
install.packages("academictwitteR")
library(academictwitteR)
然后,遵循提供的向导设置认证并开始你的数据收集之旅。
总之,academictwitteR是一个强大且易于使用的工具,对于任何寻求深入研究Twitter数据的研究人员来说,都是不可多得的选择。尽管付费API限制了进一步的开发,但它已经建立了一个坚实的基础,可以帮助您开启探索社交媒体世界的旅程。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0129
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00