module-federation/core项目中的Vite插件支持探讨
Module Federation作为前端微前端架构的重要实现方案,其核心库module-federation/core一直致力于为各种构建工具提供支持。近期社区对于Vite构建工具集成的讨论尤为热烈,本文将深入分析这一技术需求及其实现路径。
Vite集成背景与现状
Vite凭借其快速的开发体验和现代化的构建能力,在前端工具链中获得了广泛采用。然而,Module Federation与Vite的集成一直存在一定挑战。目前社区存在多个解决方案,但都未完全整合到Module Federation核心生态中。
技术实现关键点
实现一个完整的Vite插件需要解决几个关键技术问题:
-
初始化参数处理:插件需要正确处理Module Federation的初始化参数,特别是shared配置项的合并逻辑。这涉及到运行时共享模块的版本管理和冲突解决策略。
-
开发与生产模式适配:Vite具有独特的开发服务器机制,插件需要同时支持开发时的HMR和生产环境的静态构建两种模式。
-
构建工具链整合:需要与Rolldown等底层工具协同工作,确保模块联邦的远程加载、共享作用域等功能正常运作。
社区协作进展
目前已有多个社区成员投入开发工作,包括:
- 基于@module-federation/runtime的核心集成方案
- 支持Module Federation 2.0特性的实现尝试
- 开发与生产环境双模式支持的验证
特别值得注意的是,这些实现已经开始探索manifest生成、运行时插件等高级特性,为未来功能扩展奠定了基础。
未来发展方向
随着Rolldown成为Vite下一版本的基础,Module Federation的官方支持已被列入技术路线图。这将带来更紧密的集成和更好的性能表现。同时,社区驱动的解决方案也在不断演进,有望形成互补的生态系统。
总结
Module Federation与Vite的深度整合是前端工程化发展的重要一步。通过核心团队与社区开发者的协作,这一目标正在逐步实现。未来开发者将能够更便捷地在Vite项目中使用模块联邦能力,构建更加灵活高效的微前端架构。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00