线性可分支持向量机(SVM)原理与实现 - 基于GenTang/intro_ds项目分析
2025-06-29 00:14:16作者:农烁颖Land
引言
支持向量机(Support Vector Machine, SVM)是一种强大的监督学习算法,特别适用于分类任务。本文将通过GenTang/intro_ds项目中的线性可分SVM实现代码,深入讲解SVM的核心原理和实际应用。
线性可分SVM基础概念
线性可分SVM的核心思想是找到一个最优超平面,将不同类别的数据点分开,并使两类数据点到这个超平面的最小距离最大化。这个最优超平面被称为最大间隔超平面。
关键术语解释
- 支持向量:距离超平面最近的样本点,决定了超平面的位置
- 间隔(margin):两个平行于超平面且分别经过正负类支持向量的平面之间的距离
- 决策边界:用于分类的超平面
代码实现解析
1. 数据生成
项目提供了两种数据生成函数:
def generateSeparatableData(n):
# 生成线性可分数据
np.random.seed(2046)
X = np.r_[np.random.randn(n, 2) - [1, 1], np.random.randn(n, 2) + [3, 3]]
Y = [[0]] * n + [[1]] * n
data = np.concatenate((Y, X), axis=1)
data = pd.DataFrame(data, columns=["y", "x1", "x2"])
return data
def generateInseparatableData(n):
# 生成线性不可分数据
data = generateSeparatableData(n)
inseparatable = [[1, -1, 1.5], [0, 3, 1]]
inseparatable = pd.DataFrame(inseparatable, columns=["y", "x1", "x2"])
data = data.append(inseparatable)
return data
generateSeparatableData
生成两组正态分布数据,分别以(-1,-1)和(3,3)为中心generateInseparatableData
在可分数据基础上添加两个异常点,使数据变得线性不可分
2. 模型训练
def trainModel(data):
# 训练SVM模型
model = SVC(C=1e4, kernel="linear")
model.fit(data[["x1", "x2"]], data["y"])
return model
这里使用了sklearn
的SVC
类,关键参数:
C=1e4
:设置很大的惩罚系数,使模型更倾向于找到完美分类的超平面kernel="linear"
:使用线性核函数
3. 结果可视化
def visualize(data, model=None):
# 可视化结果
fig = plt.figure(figsize=(6, 6), dpi=80)
ax = fig.add_subplot(1, 1, 1)
# 绘制数据点
label1 = data[data["y"]>0]
ax.scatter(label1[["x1"]], label1[["x2"]], marker="o")
label0 = data[data["y"]==0]
ax.scatter(label0[["x1"]], label0[["x2"]], marker="^", color="k")
if model is not None:
# 绘制决策边界和间隔
w = model.coef_
a = -w[0][0] / w[0][1]
xx = np.linspace(-3, 5)
yy = a * xx - (model.intercept_) / w[0][1]
yy_down = yy - 1 / w[0][1]
yy_up = yy + 1 / w[0][1]
ax.plot(xx, yy, "r")
ax.plot(xx, yy_down, "r--")
ax.plot(xx, yy_up, "r--")
plt.show()
可视化部分展示了:
- 不同类别数据点的分布(圆形和三角形)
- 决策边界(红色实线)
- 间隔边界(红色虚线)
数学原理深入
超平面方程
决策超平面可以表示为: w·x + b = 0
其中:
- w是法向量,决定超平面的方向
- b是位移项,决定超平面与原点的距离
间隔计算
两个间隔边界的方程分别为: w·x + b = 1 w·x + b = -1
间隔距离为:2/||w||
优化目标
SVM的优化目标是最大化间隔,等价于最小化||w||²/2: min 1/2 ||w||² s.t. y_i(w·x_i + b) ≥ 1, ∀i
实际应用中的注意事项
- 线性可分性:真实数据往往不是严格线性可分的,这时需要引入松弛变量
- 参数C的选择:C值越大对误分类的惩罚越大,可能导致过拟合
- 特征缩放:SVM对特征的尺度敏感,建议先进行标准化处理
- 核函数选择:线性不可分时可考虑使用非线性核函数
总结
通过GenTang/intro_ds项目中的线性可分SVM实现,我们学习了:
- SVM的基本原理和最大间隔思想
- 如何使用scikit-learn实现线性SVM
- 如何可视化和解释SVM模型结果
- SVM的数学基础和优化目标
线性可分SVM是理解更复杂SVM模型的基础,掌握这些概念对于后续学习非线性SVM和核方法至关重要。
登录后查看全文
热门项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00HunyuanWorld-Mirror
混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
237
2.36 K

仓颉编程语言运行时与标准库。
Cangjie
122
95

暂无简介
Dart
538
117

仓颉编译器源码及 cjdb 调试工具。
C++
114
83

React Native鸿蒙化仓库
JavaScript
216
291

Ascend Extension for PyTorch
Python
77
109

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
995
588

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
568
113

LLVM 项目是一个模块化、可复用的编译器及工具链技术的集合。此fork用于添加仓颉编译器的功能,并支持仓颉编译器项目。
C++
32
25