线性可分支持向量机(SVM)原理与实现 - 基于GenTang/intro_ds项目分析
2025-06-29 18:46:29作者:农烁颖Land
引言
支持向量机(Support Vector Machine, SVM)是一种强大的监督学习算法,特别适用于分类任务。本文将通过GenTang/intro_ds项目中的线性可分SVM实现代码,深入讲解SVM的核心原理和实际应用。
线性可分SVM基础概念
线性可分SVM的核心思想是找到一个最优超平面,将不同类别的数据点分开,并使两类数据点到这个超平面的最小距离最大化。这个最优超平面被称为最大间隔超平面。
关键术语解释
- 支持向量:距离超平面最近的样本点,决定了超平面的位置
- 间隔(margin):两个平行于超平面且分别经过正负类支持向量的平面之间的距离
- 决策边界:用于分类的超平面
代码实现解析
1. 数据生成
项目提供了两种数据生成函数:
def generateSeparatableData(n):
# 生成线性可分数据
np.random.seed(2046)
X = np.r_[np.random.randn(n, 2) - [1, 1], np.random.randn(n, 2) + [3, 3]]
Y = [[0]] * n + [[1]] * n
data = np.concatenate((Y, X), axis=1)
data = pd.DataFrame(data, columns=["y", "x1", "x2"])
return data
def generateInseparatableData(n):
# 生成线性不可分数据
data = generateSeparatableData(n)
inseparatable = [[1, -1, 1.5], [0, 3, 1]]
inseparatable = pd.DataFrame(inseparatable, columns=["y", "x1", "x2"])
data = data.append(inseparatable)
return data
generateSeparatableData生成两组正态分布数据,分别以(-1,-1)和(3,3)为中心generateInseparatableData在可分数据基础上添加两个异常点,使数据变得线性不可分
2. 模型训练
def trainModel(data):
# 训练SVM模型
model = SVC(C=1e4, kernel="linear")
model.fit(data[["x1", "x2"]], data["y"])
return model
这里使用了sklearn的SVC类,关键参数:
C=1e4:设置很大的惩罚系数,使模型更倾向于找到完美分类的超平面kernel="linear":使用线性核函数
3. 结果可视化
def visualize(data, model=None):
# 可视化结果
fig = plt.figure(figsize=(6, 6), dpi=80)
ax = fig.add_subplot(1, 1, 1)
# 绘制数据点
label1 = data[data["y"]>0]
ax.scatter(label1[["x1"]], label1[["x2"]], marker="o")
label0 = data[data["y"]==0]
ax.scatter(label0[["x1"]], label0[["x2"]], marker="^", color="k")
if model is not None:
# 绘制决策边界和间隔
w = model.coef_
a = -w[0][0] / w[0][1]
xx = np.linspace(-3, 5)
yy = a * xx - (model.intercept_) / w[0][1]
yy_down = yy - 1 / w[0][1]
yy_up = yy + 1 / w[0][1]
ax.plot(xx, yy, "r")
ax.plot(xx, yy_down, "r--")
ax.plot(xx, yy_up, "r--")
plt.show()
可视化部分展示了:
- 不同类别数据点的分布(圆形和三角形)
- 决策边界(红色实线)
- 间隔边界(红色虚线)
数学原理深入
超平面方程
决策超平面可以表示为: w·x + b = 0
其中:
- w是法向量,决定超平面的方向
- b是位移项,决定超平面与原点的距离
间隔计算
两个间隔边界的方程分别为: w·x + b = 1 w·x + b = -1
间隔距离为:2/||w||
优化目标
SVM的优化目标是最大化间隔,等价于最小化||w||²/2: min 1/2 ||w||² s.t. y_i(w·x_i + b) ≥ 1, ∀i
实际应用中的注意事项
- 线性可分性:真实数据往往不是严格线性可分的,这时需要引入松弛变量
- 参数C的选择:C值越大对误分类的惩罚越大,可能导致过拟合
- 特征缩放:SVM对特征的尺度敏感,建议先进行标准化处理
- 核函数选择:线性不可分时可考虑使用非线性核函数
总结
通过GenTang/intro_ds项目中的线性可分SVM实现,我们学习了:
- SVM的基本原理和最大间隔思想
- 如何使用scikit-learn实现线性SVM
- 如何可视化和解释SVM模型结果
- SVM的数学基础和优化目标
线性可分SVM是理解更复杂SVM模型的基础,掌握这些概念对于后续学习非线性SVM和核方法至关重要。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.87 K
暂无简介
Dart
671
155
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
260
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
310
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
653
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1