线性可分支持向量机(SVM)原理与实现 - 基于GenTang/intro_ds项目分析
2025-06-29 19:24:38作者:农烁颖Land
引言
支持向量机(Support Vector Machine, SVM)是一种强大的监督学习算法,特别适用于分类任务。本文将通过GenTang/intro_ds项目中的线性可分SVM实现代码,深入讲解SVM的核心原理和实际应用。
线性可分SVM基础概念
线性可分SVM的核心思想是找到一个最优超平面,将不同类别的数据点分开,并使两类数据点到这个超平面的最小距离最大化。这个最优超平面被称为最大间隔超平面。
关键术语解释
- 支持向量:距离超平面最近的样本点,决定了超平面的位置
- 间隔(margin):两个平行于超平面且分别经过正负类支持向量的平面之间的距离
- 决策边界:用于分类的超平面
代码实现解析
1. 数据生成
项目提供了两种数据生成函数:
def generateSeparatableData(n):
# 生成线性可分数据
np.random.seed(2046)
X = np.r_[np.random.randn(n, 2) - [1, 1], np.random.randn(n, 2) + [3, 3]]
Y = [[0]] * n + [[1]] * n
data = np.concatenate((Y, X), axis=1)
data = pd.DataFrame(data, columns=["y", "x1", "x2"])
return data
def generateInseparatableData(n):
# 生成线性不可分数据
data = generateSeparatableData(n)
inseparatable = [[1, -1, 1.5], [0, 3, 1]]
inseparatable = pd.DataFrame(inseparatable, columns=["y", "x1", "x2"])
data = data.append(inseparatable)
return data
generateSeparatableData生成两组正态分布数据,分别以(-1,-1)和(3,3)为中心generateInseparatableData在可分数据基础上添加两个异常点,使数据变得线性不可分
2. 模型训练
def trainModel(data):
# 训练SVM模型
model = SVC(C=1e4, kernel="linear")
model.fit(data[["x1", "x2"]], data["y"])
return model
这里使用了sklearn的SVC类,关键参数:
C=1e4:设置很大的惩罚系数,使模型更倾向于找到完美分类的超平面kernel="linear":使用线性核函数
3. 结果可视化
def visualize(data, model=None):
# 可视化结果
fig = plt.figure(figsize=(6, 6), dpi=80)
ax = fig.add_subplot(1, 1, 1)
# 绘制数据点
label1 = data[data["y"]>0]
ax.scatter(label1[["x1"]], label1[["x2"]], marker="o")
label0 = data[data["y"]==0]
ax.scatter(label0[["x1"]], label0[["x2"]], marker="^", color="k")
if model is not None:
# 绘制决策边界和间隔
w = model.coef_
a = -w[0][0] / w[0][1]
xx = np.linspace(-3, 5)
yy = a * xx - (model.intercept_) / w[0][1]
yy_down = yy - 1 / w[0][1]
yy_up = yy + 1 / w[0][1]
ax.plot(xx, yy, "r")
ax.plot(xx, yy_down, "r--")
ax.plot(xx, yy_up, "r--")
plt.show()
可视化部分展示了:
- 不同类别数据点的分布(圆形和三角形)
- 决策边界(红色实线)
- 间隔边界(红色虚线)
数学原理深入
超平面方程
决策超平面可以表示为: w·x + b = 0
其中:
- w是法向量,决定超平面的方向
- b是位移项,决定超平面与原点的距离
间隔计算
两个间隔边界的方程分别为: w·x + b = 1 w·x + b = -1
间隔距离为:2/||w||
优化目标
SVM的优化目标是最大化间隔,等价于最小化||w||²/2: min 1/2 ||w||² s.t. y_i(w·x_i + b) ≥ 1, ∀i
实际应用中的注意事项
- 线性可分性:真实数据往往不是严格线性可分的,这时需要引入松弛变量
- 参数C的选择:C值越大对误分类的惩罚越大,可能导致过拟合
- 特征缩放:SVM对特征的尺度敏感,建议先进行标准化处理
- 核函数选择:线性不可分时可考虑使用非线性核函数
总结
通过GenTang/intro_ds项目中的线性可分SVM实现,我们学习了:
- SVM的基本原理和最大间隔思想
- 如何使用scikit-learn实现线性SVM
- 如何可视化和解释SVM模型结果
- SVM的数学基础和优化目标
线性可分SVM是理解更复杂SVM模型的基础,掌握这些概念对于后续学习非线性SVM和核方法至关重要。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
535
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178