深入理解d2l-ko项目中的编码器-解码器架构
2025-06-04 18:12:08作者:牧宁李
引言
在现代深度学习领域,处理序列到序列(sequence-to-sequence)的转换任务是一个重要课题。这类任务的特点是输入和输出都是可变长度的序列,比如机器翻译、语音识别和文本摘要等。d2l-ko项目中介绍的编码器-解码器(Encoder-Decoder)架构为解决这类问题提供了基础框架。
编码器-解码器架构概述
编码器-解码器架构由两个核心组件组成:
- 编码器(Encoder):负责将可变长度的输入序列转换为固定形状的状态表示
- 解码器(Decoder):将编码后的状态映射回可变长度的输出序列
这种架构特别适合处理输入和输出长度不一致的场景,如英语到法语的翻译任务。编码器将英语句子编码为内部表示,解码器则基于这个表示生成对应的法语句子。
编码器组件详解
编码器的核心功能是将任意长度的输入序列转换为固定维度的上下文表示。在d2l-ko的实现中,编码器被定义为一个抽象基类:
class Encoder(nn.Module):
"""编码器基类接口"""
def __init__(self, **kwargs):
super(Encoder, self).__init__(**kwargs)
def forward(self, X, *args):
raise NotImplementedError
实际应用中,编码器可以采用多种神经网络结构实现,如:
- 循环神经网络(RNN)
- 长短期记忆网络(LSTM)
- 门控循环单元(GRU)
- Transformer编码器
解码器组件详解
解码器的任务是根据编码器产生的上下文表示逐步生成输出序列。d2l-ko中的解码器接口包含两个关键方法:
class Decoder(nn.Module):
"""解码器基类接口"""
def __init__(self, **kwargs):
super(Decoder, self).__init__(**kwargs)
def init_state(self, enc_outputs, *args):
"""初始化解码器状态"""
raise NotImplementedError
def forward(self, X, state):
"""前向传播"""
raise NotImplementedError
解码器通常采用自回归(auto-regressive)方式工作,即在每个时间步:
- 接收前一个时间步的输出作为输入
- 结合当前状态生成当前时间步的输出
- 更新内部状态
架构整合与应用
将编码器和解码器组合起来就形成了完整的编码器-解码器架构:
class EncoderDecoder(nn.Module):
"""编码器-解码器架构基类"""
def __init__(self, encoder, decoder, **kwargs):
super(EncoderDecoder, self).__init__(**kwargs)
self.encoder = encoder
self.decoder = decoder
def forward(self, enc_X, dec_X, *args):
enc_outputs = self.encoder(enc_X, *args)
dec_state = self.decoder.init_state(enc_outputs, *args)
return self.decoder(dec_X, dec_state)
这种架构不仅限于机器翻译,还可应用于:
- 文本摘要(长文本→短文本)
- 语音识别(音频→文本)
- 图像描述生成(图像→文本)
- 对话系统(问题→回答)
关键点总结
- 架构优势:编码器-解码器结构有效解决了输入输出序列长度不一致的问题
- 灵活性:编码器和解码器可以采用不同的神经网络实现
- 广泛应用:该架构是许多序列转换任务的基础
进阶思考
-
编码器和解码器是否必须使用相同类型的神经网络?实际上,它们可以采用不同的结构,例如编码器用CNN处理图像,解码器用RNN生成文本。
-
除了提到的应用,这种架构还可用于:
- 代码生成(自然语言→编程语言)
- 音乐生成(乐谱→音频)
- 视频描述生成(视频→文本)
编码器-解码器架构为序列转换问题提供了强大的框架,理解其原理对于掌握现代深度学习模型至关重要。
登录后查看全文
热门项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

React Native鸿蒙化仓库
JavaScript
212
287

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
527
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0

ArkUI-X adaptation to Android | ArkUI-X支持Android平台的适配层
C++
39
55

ArkUI-X adaptation to iOS | ArkUI-X支持iOS平台的适配层
Objective-C++
19
44