深入理解d2l-ko项目中的编码器-解码器架构
2025-06-04 20:24:08作者:牧宁李
引言
在现代深度学习领域,处理序列到序列(sequence-to-sequence)的转换任务是一个重要课题。这类任务的特点是输入和输出都是可变长度的序列,比如机器翻译、语音识别和文本摘要等。d2l-ko项目中介绍的编码器-解码器(Encoder-Decoder)架构为解决这类问题提供了基础框架。
编码器-解码器架构概述
编码器-解码器架构由两个核心组件组成:
- 编码器(Encoder):负责将可变长度的输入序列转换为固定形状的状态表示
- 解码器(Decoder):将编码后的状态映射回可变长度的输出序列
这种架构特别适合处理输入和输出长度不一致的场景,如英语到法语的翻译任务。编码器将英语句子编码为内部表示,解码器则基于这个表示生成对应的法语句子。
编码器组件详解
编码器的核心功能是将任意长度的输入序列转换为固定维度的上下文表示。在d2l-ko的实现中,编码器被定义为一个抽象基类:
class Encoder(nn.Module):
"""编码器基类接口"""
def __init__(self, **kwargs):
super(Encoder, self).__init__(**kwargs)
def forward(self, X, *args):
raise NotImplementedError
实际应用中,编码器可以采用多种神经网络结构实现,如:
- 循环神经网络(RNN)
- 长短期记忆网络(LSTM)
- 门控循环单元(GRU)
- Transformer编码器
解码器组件详解
解码器的任务是根据编码器产生的上下文表示逐步生成输出序列。d2l-ko中的解码器接口包含两个关键方法:
class Decoder(nn.Module):
"""解码器基类接口"""
def __init__(self, **kwargs):
super(Decoder, self).__init__(**kwargs)
def init_state(self, enc_outputs, *args):
"""初始化解码器状态"""
raise NotImplementedError
def forward(self, X, state):
"""前向传播"""
raise NotImplementedError
解码器通常采用自回归(auto-regressive)方式工作,即在每个时间步:
- 接收前一个时间步的输出作为输入
- 结合当前状态生成当前时间步的输出
- 更新内部状态
架构整合与应用
将编码器和解码器组合起来就形成了完整的编码器-解码器架构:
class EncoderDecoder(nn.Module):
"""编码器-解码器架构基类"""
def __init__(self, encoder, decoder, **kwargs):
super(EncoderDecoder, self).__init__(**kwargs)
self.encoder = encoder
self.decoder = decoder
def forward(self, enc_X, dec_X, *args):
enc_outputs = self.encoder(enc_X, *args)
dec_state = self.decoder.init_state(enc_outputs, *args)
return self.decoder(dec_X, dec_state)
这种架构不仅限于机器翻译,还可应用于:
- 文本摘要(长文本→短文本)
- 语音识别(音频→文本)
- 图像描述生成(图像→文本)
- 对话系统(问题→回答)
关键点总结
- 架构优势:编码器-解码器结构有效解决了输入输出序列长度不一致的问题
- 灵活性:编码器和解码器可以采用不同的神经网络实现
- 广泛应用:该架构是许多序列转换任务的基础
进阶思考
-
编码器和解码器是否必须使用相同类型的神经网络?实际上,它们可以采用不同的结构,例如编码器用CNN处理图像,解码器用RNN生成文本。
-
除了提到的应用,这种架构还可用于:
- 代码生成(自然语言→编程语言)
- 音乐生成(乐谱→音频)
- 视频描述生成(视频→文本)
编码器-解码器架构为序列转换问题提供了强大的框架,理解其原理对于掌握现代深度学习模型至关重要。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 STM32到GD32项目移植完全指南:从兼容性到实战技巧 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
415
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
680
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
229
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660