ChatGLM3多卡LoRA微调中的RuntimeError问题分析与解决
2025-05-16 20:08:19作者:凤尚柏Louis
问题背景
在使用ChatGLM3进行LoRA微调时,用户报告了一个RuntimeError错误。具体表现为:当使用4张GPU卡进行训练时,在完成7轮训练后开始评估阶段时,系统抛出"RuntimeError: Tensors must be CUDA and dense"的错误提示。
错误分析
这个错误通常发生在PyTorch的多GPU训练环境中,表明系统尝试处理非CUDA张量或者稀疏张量,而当前操作要求必须是CUDA设备上的密集张量。在ChatGLM3的微调场景中,这种情况可能由以下几个原因导致:
- 张量设备不匹配:某些张量未被正确转移到GPU设备上
- 多卡同步问题:在数据并行训练中,不同GPU间的张量状态不一致
- 评估阶段的数据处理:评估时的数据加载或预处理与训练阶段存在差异
解决方案
根据ChatGLM3官方维护者的建议,这个问题可以通过以下两种方式解决:
方案一:使用DeepSpeed进行多卡训练
DeepSpeed提供了更完善的分布式训练支持,可以有效避免这类设备同步问题。推荐使用以下命令进行多卡训练:
torchrun --standalone --nnodes=1 --nproc_per_node=8 finetune_hf.py data/AdvertiseGen_fix THUDM/chatglm3-6b configs/sft.yaml --deepspeed configs/deepspeed.json
关键参数说明:
--nproc_per_node=8:指定使用的GPU数量--deepspeed configs/deepspeed.json:启用DeepSpeed并指定配置文件
方案二:检查并修正数据流
如果仍希望使用原生PyTorch多卡训练,可以采取以下措施:
- 确保所有张量都在CUDA设备上:在数据加载和模型前向传播前,显式调用
.cuda() - 统一数据格式:检查评估数据是否与训练数据格式完全一致
- 验证数据并行设置:确保DataParallel或DistributedDataParallel正确配置
最佳实践建议
- 环境一致性:确保训练和评估阶段使用相同的Python环境和库版本
- 内存管理:监控GPU内存使用情况,避免因内存不足导致张量被转移到CPU
- 日志记录:增加详细的日志输出,帮助定位张量设备转换的具体位置
- 梯度检查:在训练循环中加入梯度检查,确保反向传播过程中没有出现设备转换
总结
ChatGLM3的多卡LoRA微调过程中遇到的"Tensors must be CUDA and dense"错误,主要源于分布式训练中的设备同步问题。通过使用DeepSpeed或仔细检查数据流,可以有效解决这一问题。对于大规模模型微调任务,推荐优先考虑DeepSpeed方案,它能提供更好的分布式训练支持和内存优化。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
177
Ascend Extension for PyTorch
Python
340
404
React Native鸿蒙化仓库
JavaScript
302
355
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
暂无简介
Dart
770
191
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
140
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247