ChatGLM3多卡LoRA微调中的RuntimeError问题分析与解决
2025-05-16 08:14:31作者:凤尚柏Louis
问题背景
在使用ChatGLM3进行LoRA微调时,用户报告了一个RuntimeError错误。具体表现为:当使用4张GPU卡进行训练时,在完成7轮训练后开始评估阶段时,系统抛出"RuntimeError: Tensors must be CUDA and dense"的错误提示。
错误分析
这个错误通常发生在PyTorch的多GPU训练环境中,表明系统尝试处理非CUDA张量或者稀疏张量,而当前操作要求必须是CUDA设备上的密集张量。在ChatGLM3的微调场景中,这种情况可能由以下几个原因导致:
- 张量设备不匹配:某些张量未被正确转移到GPU设备上
- 多卡同步问题:在数据并行训练中,不同GPU间的张量状态不一致
- 评估阶段的数据处理:评估时的数据加载或预处理与训练阶段存在差异
解决方案
根据ChatGLM3官方维护者的建议,这个问题可以通过以下两种方式解决:
方案一:使用DeepSpeed进行多卡训练
DeepSpeed提供了更完善的分布式训练支持,可以有效避免这类设备同步问题。推荐使用以下命令进行多卡训练:
torchrun --standalone --nnodes=1 --nproc_per_node=8 finetune_hf.py data/AdvertiseGen_fix THUDM/chatglm3-6b configs/sft.yaml --deepspeed configs/deepspeed.json
关键参数说明:
--nproc_per_node=8
:指定使用的GPU数量--deepspeed configs/deepspeed.json
:启用DeepSpeed并指定配置文件
方案二:检查并修正数据流
如果仍希望使用原生PyTorch多卡训练,可以采取以下措施:
- 确保所有张量都在CUDA设备上:在数据加载和模型前向传播前,显式调用
.cuda()
- 统一数据格式:检查评估数据是否与训练数据格式完全一致
- 验证数据并行设置:确保DataParallel或DistributedDataParallel正确配置
最佳实践建议
- 环境一致性:确保训练和评估阶段使用相同的Python环境和库版本
- 内存管理:监控GPU内存使用情况,避免因内存不足导致张量被转移到CPU
- 日志记录:增加详细的日志输出,帮助定位张量设备转换的具体位置
- 梯度检查:在训练循环中加入梯度检查,确保反向传播过程中没有出现设备转换
总结
ChatGLM3的多卡LoRA微调过程中遇到的"Tensors must be CUDA and dense"错误,主要源于分布式训练中的设备同步问题。通过使用DeepSpeed或仔细检查数据流,可以有效解决这一问题。对于大规模模型微调任务,推荐优先考虑DeepSpeed方案,它能提供更好的分布式训练支持和内存优化。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
195
2.17 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
78
72

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
79

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
349
1.36 K

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

React Native鸿蒙化仓库
C++
207
284

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
17