Scanpy中热图标记基因标签优化技巧
2025-07-04 07:25:51作者:谭伦延
在单细胞RNA测序数据分析中,热图(heatmap)是展示不同细胞群间差异表达基因的常用可视化方法。Scanpy作为单细胞分析的主流工具,其sc.pl.rank_genes_groups_heatmap函数能够直观展示各细胞群的标记基因表达模式。然而当展示大量基因时,基因标签会过于密集,影响可视化效果和解读。
问题背景
当使用sc.pl.rank_genes_groups_heatmap函数展示500个基因时,默认设置会使所有基因标签都显示在热图上,导致标签重叠严重,难以辨认特定感兴趣的基因。这种情况在分析大型单细胞数据集时尤为常见。
解决方案
方法一:限制展示基因数量
最直接的解决方法是减少展示的基因数量,直到标签清晰可读:
sc.pl.rank_genes_groups_heatmap(
adata,
n_genes=50, # 减少展示基因数量
key='rank_genes_r1',
groupby='leiden_r1',
show_gene_labels=True,
cmap='bwr',
use_raw=False,
dendrogram=True,
vmin=-1, vmax=1,
figsize=(15, 10)
这种方法简单有效,但缺点是会丢失部分基因表达信息。
方法二:自定义标签显示
更灵活的方法是使用Matplotlib的底层功能自定义标签显示:
import matplotlib.pyplot as plt
# 创建图形对象
fig, ax = plt.subplots(figsize=(15, 10))
# 绘制热图
sc.pl.rank_genes_groups_heatmap(
adata,
n_genes=500,
key='rank_genes_r1',
groupby='leiden_r1',
show_gene_labels=True,
cmap='bwr',
use_raw=False,
dendrogram=True,
vmin=-1, vmax=1,
ax=ax)
# 获取并修改x轴标签
labels = ax.get_xticklabels()
for i, label in enumerate(labels):
if label.get_text() not in ['gene1', 'gene2', 'gene3']: # 只保留感兴趣的基因
label.set_visible(False)
plt.show()
这种方法可以精确控制哪些基因标签显示,同时保留所有基因的表达数据在热图中。
进阶技巧
结合基因筛选
在实际分析中,可以先筛选出感兴趣的基因子集,再绘制热图:
# 假设interesting_genes是预先筛选的基因列表
interesting_genes = ['CD3D', 'CD4', 'CD8A', 'MS4A1', 'CD14']
# 获取所有差异表达基因
marker_genes = adata.uns['rank_genes_r1']['names']
# 筛选出感兴趣的基因在所有群组中的位置
selected_indices = []
for i in range(marker_genes.shape[1]):
group_genes = marker_genes[:, i]
selected_indices.extend([j for j, gene in enumerate(group_genes) if gene in interesting_genes])
# 绘制热图时只显示这些基因
使用基因分组
对于大型基因集,可以考虑按功能分组展示:
# 定义基因功能分组
gene_groups = {
'T细胞标记': ['CD3D', 'CD3E', 'CD3G', 'CD4', 'CD8A', 'CD8B'],
'B细胞标记': ['MS4A1', 'CD19', 'CD79A', 'CD79B'],
'髓系标记': ['CD14', 'FCGR3A', 'LYZ', 'CST3']
}
# 为每个功能组单独绘制热图
for group_name, genes in gene_groups.items():
print(f"绘制{group_name}热图")
sc.pl.rank_genes_groups_heatmap(
adata,
gene_names=genes,
key='rank_genes_r1',
groupby='leiden_r1',
show_gene_labels=True,
title=group_name,
figsize=(10, 6))
总结
在Scanpy中优化热图基因标签显示有多种方法,从简单的减少展示基因数量,到复杂的自定义标签显示和基因分组展示。选择哪种方法取决于具体分析需求和数据集规模。对于初步探索,限制基因数量可能更合适;而对于发表级图表,自定义标签或分组展示能提供更专业的结果呈现。
掌握这些技巧可以显著提升单细胞数据分析结果的可视化质量,使重要发现更清晰地展现出来。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
669
155
Ascend Extension for PyTorch
Python
219
236
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.81 K
React Native鸿蒙化仓库
JavaScript
259
322
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
654
仓颉编程语言运行时与标准库。
Cangjie
141
878