Pigsty v3.5.0 Beta2发布:PostgreSQL 18支持与全面升级
Pigsty是一个开源的PostgreSQL数据库管理平台,它提供了一整套从部署、监控到管理的解决方案。作为一个"PostgreSQL in a Box"项目,Pigsty将PostgreSQL与丰富的扩展、监控工具和可视化界面打包在一起,让用户可以快速搭建生产级的数据库环境。
最新发布的Pigsty v3.5.0 Beta2版本带来了多项重要更新,其中最引人注目的是对即将发布的PostgreSQL 18的Beta支持。让我们深入了解一下这个版本的主要改进。
PostgreSQL 18 Beta支持
v3.5.0-b2版本首次提供了对PostgreSQL 18 Beta1的完整支持。这包括:
- 监控支持:通过pg_exporter 1.0.0版本实现了对PG18的指标收集
- 安装支持:pig CLI工具0.4.2版本新增了对PG18的安装能力
- 配置模板:新增了专门针对PG18的pg18.yml配置模板
这使得用户可以在PG18正式发布前就提前体验和测试新版本特性,为未来的升级做好准备。
架构与功能重构
本次版本对Pigsty的核心架构进行了重要重构:
- 监控功能分离:将监控相关功能从pgsql模块中分离出来,形成独立的pg_monitor角色
- 任务清理:移除了冗余的清理逻辑,精简了任务结构
- 模板标准化:统一了模板命名规范,移除了.j2后缀
- 扩展管理:所有扩展现在默认安装在extensions模式中,遵循Supabase的最佳实践
这些改进使得系统架构更加清晰,维护更加方便。
安全与稳定性增强
在安全方面,v3.5.0-b2版本引入了多项改进:
- PgBouncer调优:增大了连接池规模,优化了清理查询,新增了pgbouncer_ignore_param参数
- 密钥管理:新增pg_key任务用于生成pgsodium主密钥
- 复制槽同步:在PG17上默认启用了sync_replication_slots功能
Supabase支持强化
针对自托管的Supabase环境,本版本进行了多项优化:
- 容器与模式更新:同步到最新版本的Supabase组件
- 密钥加载:支持pgsodium服务器密钥的自动加载
- 延迟问题修复:通过supa-kick定时任务解决了Logflare延迟问题
- 搜索路径设置:为监控函数添加了明确的search_path设置
监控栈全面升级
监控系统在这个版本中得到了全面刷新:
- Grafana升级至12.0.0版本
- pg_exporter升级至1.0.0版本
- 新增了对TimescaleDB和Citus的监控指标支持
- 使用了更紧凑的收集器配置文件设计
扩展生态丰富
Pigsty v3.5.0-b2捆绑了多达421个PostgreSQL扩展,包括:
- 新增了对OrioleDB和OpenHalo内核的全平台支持
- 更新了TimescaleDB至2.20.0版本(放弃了对PG14的支持)
- 更新了Citus至12.0.3版本
- 新增了spat、pgsentinel等多个新扩展
CLI工具改进
pig命令行工具新增了do命令,可以完全替代原有的bin/目录下的脚本,提供了更统一的命令行体验。
基础设施组件更新
底层基础设施组件也同步到了最新版本:
- 数据库组件:PostgreSQL各版本更新至最新维护版本
- 中间件:PGBouncer升级至1.24.1,PgBackRest升级至2.55
- 工具链:DuckDB升级至1.3.0,etcd升级至3.6.0
总结
Pigsty v3.5.0 Beta2是一个功能丰富的中期版本,它不仅为即将到来的PostgreSQL 18做好了准备,还对系统架构进行了重要优化,增强了安全性和稳定性。特别是对Supabase环境的支持改进和监控系统的全面升级,使得Pigsty作为一个完整的PostgreSQL解决方案更加成熟可靠。
对于计划评估PostgreSQL 18新特性的用户,或者需要构建现代化PostgreSQL基础设施的团队,这个版本都值得关注和试用。随着正式版的临近,我们可以期待Pigsty将继续保持与PostgreSQL生态系统的紧密同步。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00