Img2Mol 开源项目使用教程
2024-09-14 01:37:57作者:温艾琴Wonderful
1. 项目介绍
Img2Mol 是一个基于深度学习的开源项目,旨在从分子图像中准确识别并生成其 SMILES 表示。该项目结合了深度卷积神经网络和预训练的解码器,能够将分子图像转换为 SMILES 字符串,准确率高达 88%。Img2Mol 由 Bayer AG 开发,并在 GitHub 上公开发布,适用于非商业用途。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了 Python 3.8.5 和 pip 20.2.4。然后,按照以下步骤设置环境:
# 克隆项目仓库
git clone https://github.com/bayer-science-for-a-better-life/Img2Mol.git
# 进入项目目录
cd Img2Mol
# 创建并激活虚拟环境
conda env create -f environment.yml
conda activate img2mol
# 安装依赖
pip install -r requirements.txt
2.2 下载模型权重
下载预训练的模型权重文件,并将其放置在 model/ 目录下:
# 下载模型权重
bash download_model.sh
2.3 运行示例代码
使用提供的 Jupyter Notebook 示例代码进行推理:
# 启动 Jupyter Notebook
jupyter notebook
打开 example_inference.ipynb 文件,按照步骤运行代码,即可看到 Img2Mol 如何将分子图像转换为 SMILES 字符串。
3. 应用案例和最佳实践
3.1 应用案例
Img2Mol 可以广泛应用于化学和药物研发领域,例如:
- 分子识别:从化学文献中的图像中自动提取分子结构。
- 数据增强:通过图像生成 SMILES 数据,用于训练其他机器学习模型。
- 教育工具:帮助学生和研究人员快速理解分子结构。
3.2 最佳实践
- 数据预处理:确保输入的分子图像清晰且无背景干扰。
- 模型微调:根据特定需求,可以对模型进行微调以提高特定类型分子图像的识别准确率。
- 批量处理:使用批量处理功能,提高大规模数据处理的效率。
4. 典型生态项目
Img2Mol 可以与其他开源项目结合使用,构建更强大的分子识别和分析工具:
- RDKit:用于化学信息学的开源工具包,可以与 Img2Mol 结合进行分子数据的进一步处理和分析。
- DeepChem:用于化学和材料科学的深度学习工具包,可以与 Img2Mol 结合进行分子数据的深度学习分析。
- OpenChem:用于化学和药物研发的深度学习框架,可以与 Img2Mol 结合进行分子数据的自动化处理。
通过这些生态项目的结合,Img2Mol 可以发挥更大的作用,帮助研究人员和开发者更高效地进行分子识别和分析工作。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.52 K
React Native鸿蒙化仓库
JavaScript
286
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
91
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
722
174
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
438
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19