BigDL项目中NPU推理输出的格式处理技巧
2025-05-29 10:01:19作者:董灵辛Dennis
在使用BigDL项目中的npu_quickstart工具进行模型推理时,开发者可能会遇到输出格式包含完整对话提示的问题。本文将深入分析这一现象的原因,并提供多种解决方案,帮助开发者获取纯净的模型输出内容。
问题现象分析
当使用NPU进行模型推理时,默认输出通常会包含完整的对话上下文和提示信息,例如:
-------------------- Output --------------------
system
You are a helpful assistant.
user
AI是什么?
assistant
AI是"人工智能"(Artificial Intelligence)的英文缩写...
这种输出格式虽然完整展示了对话流程,但在某些应用场景下,开发者可能只需要模型生成的纯文本内容部分。
解决方案详解
方法一:使用TextStreamer跳过提示
在基于Hugging Face Transformers的代码实现中,可以通过配置TextStreamer参数来跳过提示部分:
streamer = TextStreamer(
tokenizer=tokenizer,
skip_special_tokens=True,
skip_prompt=True
)
关键参数说明:
skip_special_tokens:跳过特殊tokenskip_prompt:跳过输入提示部分
这种方法适用于流式输出场景,能够实时获取纯净的模型生成内容。
方法二:后处理输出字符串
对于非流式推理场景,开发者可以在获取完整输出后,通过字符串处理提取所需部分。常见的处理方式包括:
- 按特定分隔符分割字符串
- 使用正则表达式匹配目标内容
- 根据已知的输出格式规律进行截取
这种方法灵活性强,适用于各种不同的输出格式。
技术原理深入
这种现象的产生源于BigDL项目对NPU推理的优化设计。为了保持对话的连贯性和调试便利性,默认输出会包含完整的对话上下文。这与原生Hugging Face Transformers的行为有所不同,后者通常只返回模型的新生成内容。
理解这一设计差异对于正确使用NPU加速至关重要。开发者应当根据实际应用场景选择合适的输出处理方式:
- 交互式应用:保留完整对话格式
- API服务:提取纯净输出
- 批量处理:后处理优化效率
最佳实践建议
- 对于生产环境,推荐使用方法一,直接跳过提示生成,效率更高
- 在调试阶段,可以保留完整输出以便问题排查
- 考虑将输出处理逻辑封装为统一函数,提高代码可维护性
- 对于不同的模型,可能需要调整处理逻辑以适应其特定的输出格式
通过合理运用这些技巧,开发者可以更高效地利用BigDL项目的NPU加速能力,同时获得符合需求的输出格式。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
413
3.18 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
690
325
Ascend Extension for PyTorch
Python
229
258
暂无简介
Dart
679
160
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
346
147