ScottPlot 5中实现Y轴误差填充区域的方法
2025-06-06 19:09:00作者:凤尚柏Louis
在数据可视化领域,误差表示是展示数据不确定性的重要手段。ScottPlot作为一款强大的.NET绘图库,在最新版本5.x中提供了更加灵活和强大的误差表示功能。本文将详细介绍如何在ScottPlot 5中实现Y轴误差的填充区域表示。
基本概念
误差填充区域(Error Fill Area)是一种直观展示数据波动范围的可视化方式。它通过在数据线周围创建半透明的彩色区域,清晰地显示出数据的误差范围或置信区间。这种表示方法特别适用于展示实验数据、统计结果或任何带有不确定性的测量值。
实现步骤
1. 准备数据
首先需要准备三组数据:
- X轴坐标值
- Y轴平均值
- Y轴误差值
// 生成X轴数据(0到π,步长0.05)
double[] xs = Generate.Range(0, Math.PI, 0.05);
// 生成Y轴数据(正弦函数加随机噪声)
double[] ys = xs.Select(x => Math.Sin(x) + Generate.RandomNumber(0.1)).ToArray();
// 生成误差数据(基于Y值的随机比例)
double[] yErr = ys.Select(x => x * Generate.RandomNumber(0.5) + 0.05).ToArray();
2. 计算误差边界
根据平均值和误差值计算上下边界:
// 计算Y-误差
double[] yErrNeg = Enumerable.Range(0, ys.Length)
.Select(x => ys[x] - yErr[x]).ToArray();
// 计算Y+误差
double[] yErrPos = Enumerable.Range(0, ys.Length)
.Select(x => ys[x] + yErr[x]).ToArray();
3. 创建误差填充区域
使用Add.FillY方法创建填充区域:
// 添加Y误差填充区域
var errFill = plot.Add.FillY(xs, yErrNeg, yErrPos);
// 设置填充样式
errFill.LineWidth = 0; // 不显示边界线
errFill.FillColor = Colors.Blue.WithAlpha(0.2); // 半透明蓝色填充
errFill.LegendText = "Error"; // 图例文本
4. 添加平均值曲线
为了清晰展示数据趋势,通常会同时绘制平均值曲线:
// 添加平均值折线图
var meanLine = plot.Add.ScatterLine(xs, ys);
// 设置线条样式
meanLine.LineColor = Colors.Blue;
meanLine.LineWidth = 2;
meanLine.LegendText = "Mean";
5. 完善图表
最后可以添加一些图表修饰:
// 设置图例位置
plot.Legend.Alignment = Alignment.UpperRight;
效果说明
通过上述代码,我们将得到一张包含以下元素的图表:
- 一条蓝色的实线表示数据的平均值
- 围绕平均值线的半透明蓝色区域表示误差范围
- 右上角的图例说明各元素的含义
这种表示方法使得数据的波动范围一目了然,特别适合用于科学论文、实验报告等需要精确展示数据不确定性的场合。
进阶技巧
-
颜色自定义:可以通过调整
WithAlpha参数改变填充区域的透明度,值越小越透明。 -
边界线控制:如果需要显示边界线,可以设置
LineWidth大于0,并通过LineColor设置边界线颜色。 -
不对称误差:如果上下误差不对称,只需分别计算上下边界即可实现。
-
性能优化:对于大数据集,可以考虑使用
Add.FillY的重载方法直接传入边界值,避免额外的数组计算。
ScottPlot 5的这套API设计既保持了简洁性,又提供了足够的灵活性,能够满足各种误差可视化的需求。通过合理组合这些方法,用户可以创建出既美观又专业的科学图表。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C064
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 单总线CPU设计实训代码:计算机组成原理最佳学习资源 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南
项目优选
收起
deepin linux kernel
C
26
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
457
3.41 K
Ascend Extension for PyTorch
Python
263
295
暂无简介
Dart
708
168
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
178
64
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
836
412
React Native鸿蒙化仓库
JavaScript
284
331
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.25 K
686
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
410
130