Concise Concepts 开源项目教程
2024-09-12 03:47:49作者:宗隆裙
1. 项目介绍
Concise Concepts 是一个基于 spaCy 的轻量级工具,旨在通过少样本命名实体识别(NER)和词嵌入相似性来简化 NER 任务。它特别适用于那些需要快速上手且不需要大量训练数据的场景。Concise Concepts 不仅支持少样本 NER,还引入了实体评分功能,进一步提升了识别的准确性。
2. 项目快速启动
安装
首先,确保你已经安装了 Python 和 pip。然后,使用以下命令安装 Concise Concepts:
pip install concise-concepts
快速启动示例
以下是一个简单的示例,展示如何使用 Concise Concepts 进行命名实体识别:
import spacy
from spacy import displacy
# 加载 spaCy 模型
nlp = spacy.load("en_core_web_md", disable=["ner"])
# 定义数据
data = {
"fruit": ["apple", "pear", "orange"],
"vegetable": ["broccoli", "spinach", "tomato"],
"meat": ["beef", "pork", "turkey", "duck"]
}
# 添加 Concise Concepts 组件到管道
nlp.add_pipe(
"concise_concepts",
config={
"data": data,
"ent_score": True,
"verbose": True,
"exclude_pos": ["VERB", "AUX"],
"exclude_dep": ["DOBJ", "PCOMP"],
"include_compound_words": False,
"json_path": "/fruitful_patterns.json",
"topn": (100, 500, 300)
}
)
# 处理文本
text = """
Heat the oil in a large pan and add the Onion, celery and carrots.
Then, cook over a medium–low heat for 10 minutes, or until softened.
Add the courgette, garlic, red peppers and oregano and cook for 2–3 minutes.
Later, add some oranges and chickens.
"""
doc = nlp(text)
# 可视化实体
options = {
"colors": {
"fruit": "darkorange",
"vegetable": "limegreen",
"meat": "salmon"
},
"ents": ["fruit", "vegetable", "meat"]
}
displacy.render(doc, style="ent", options=options)
3. 应用案例和最佳实践
应用案例
Concise Concepts 特别适用于以下场景:
- 快速原型开发:在需要快速验证 NER 模型的有效性时,Concise Concepts 可以快速上手,无需大量标注数据。
- 领域特定 NER:在特定领域(如医疗、金融)中,Concise Concepts 可以通过少样本学习快速适应新领域。
最佳实践
- 数据准备:确保数据集中的实体类别和实例尽可能全面,以提高识别的准确性。
- 参数调优:根据具体任务调整
topn、exclude_pos等参数,以获得最佳性能。 - 实体评分:利用实体评分功能,可以进一步筛选出置信度较高的实体。
4. 典型生态项目
Concise Concepts 可以与以下开源项目结合使用,进一步提升 NER 任务的效果:
- spaCy:作为底层框架,spaCy 提供了强大的 NLP 处理能力。
- gensim:用于加载和使用自定义词嵌入模型,增强实体识别的准确性。
- Rubrix:用于可视化和分析 NER 结果,帮助用户更好地理解和优化模型。
通过这些生态项目的结合,Concise Concepts 可以在实际应用中发挥更大的作用。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
329
388
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
188
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
136