Candle项目中的LLM长文本提示批处理优化技术
2025-05-13 14:56:27作者:昌雅子Ethen
在大型语言模型(LLM)应用中,处理长文本提示时经常会遇到内存使用激增的问题。本文深入分析Candle项目中Llama模型处理长文本提示的技术挑战及优化方案。
问题背景
当输入提示长度超过常规大小时,传统处理方式会将整个提示作为一个张量送入模型进行前向传递。这种处理方式会导致内存使用出现峰值,特别是在处理超长文本时,这一问题尤为明显。
技术挑战分析
Candle-transformers中Llama模型的CausalSelfAttention实现存在两个主要处理路径:
- 序列长度为1的特殊情况(文本生成阶段)
- 序列长度等于完整提示大小且index_pos为0的情况(初始提示处理阶段)
当尝试将提示分割为多个token块进行处理时,第二个块的处理会遇到广播错误。这是因为生成的掩码大小与提示块大小匹配,而KV缓存已经包含了之前的数据,导致形状不匹配。
解决方案演进
初始解决方案
通过修改掩码生成方式,在index_pos不为0时:
- 创建与历史数据对应的零张量
- 将零张量与当前掩码拼接
- 广播调整形状使其与注意力张量匹配
这种方法虽然解决了问题,但存在潜在的性能问题,且仅适用于具有KV缓存的Llama模型。
优化方案
更优雅的解决方案是重构掩码生成机制:
- 修改掩码缓存使用(usize, usize)作为键
- 重新实现掩码生成函数,考虑当前位置和序列长度
- 生成三角掩码时使用更健壮的条件判断(j + t > i + u)
新方案避免了拼接操作,提高了效率,同时保持了与原始实现相同的结果质量。
实现细节
优化后的掩码生成函数核心逻辑:
let mask: Vec<_> =
(0..t).flat_map(|i|
(0..u).map(move |j|
u8::from(j + t > i + u)))
.collect();
在forward函数中,掩码创建简化为:
let mask = cache.mask(seq_len, index_pos + seq_len)?.broadcast_as(att.shape())?;
性能影响
测试表明,该方案在不同批处理大小下表现良好:
- 批大小为1时处理时间显著增加(预期行为)
- 批大小为64/73/128/256/1024时均能正确处理892个token的提示
- 内存使用更加平稳,避免了处理长提示时的内存峰值
技术意义
这一优化使得Candle项目中的Llama模型能够:
- 更高效地处理长文本提示
- 降低内存使用峰值,提高系统稳定性
- 为批处理长文本提供了可靠的技术基础
该方案不仅解决了具体的技术问题,也为类似场景下的模型优化提供了可借鉴的思路。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
【免费下载】 DLL修复工具免费版 OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.52 K
React Native鸿蒙化仓库
JavaScript
286
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
91
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
722
174
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
438
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19