SafeLine 20 扩展插件开发完全指南
2025-06-05 01:38:48作者:平淮齐Percy
前言
SafeLine 20 作为新一代 Web 应用防火墙,提供了强大的扩展插件系统,允许开发者通过 Lua 脚本实现自定义的安全防护逻辑。本文将全面介绍 SafeLine 20 扩展插件的开发方法,帮助开发者快速掌握插件开发的核心要点。
插件系统概述
SafeLine 20 扩展插件系统基于 Lua 5.1 标准,提供了丰富的 API 接口,支持三种主要类型的触发器:
- Match 触发器:基于请求特征进行匹配处理
- Ticker 触发器:实现定时任务功能
- Query 触发器:支持类 SQL 的流式统计分析
开发环境准备
在开始开发前,需要了解以下基本要求:
- Lua 5.1 语法兼容
- 受限的标准库访问(IO 库完全禁用,OS 库部分函数可用)
- 必须导入 safeline 模块
local safeline = require "safeline"
触发器类型详解
1. Match 触发器开发
Match 触发器是最常用的触发器类型,用于处理符合特定条件的 HTTP 请求。
基本结构
local match = {
ip = "192.168.1.0/24",
host = [[example\.com:80]],
url_path = [[/admin/.*]],
target = safeline.MATCH_TARGET_DETECT
}
function process(ip, host, url_path)
-- 处理逻辑
end
safeline.register(safeline.TYPE_MATCH, match, process)
匹配条件详解
字段 | 说明 | 示例 |
---|---|---|
ip | 支持 CIDR 格式 | "192.168.1.0/24" |
host | 正则表达式匹配 | [[.*.example.com:80]] |
url_path | 正则表达式匹配 | [[/admin/.*]] |
target | 请求类型过滤 | safeline.MATCH_TARGET_ALL |
请求上下文获取
在回调函数中可获取请求的详细信息:
local target = safeline.get_target() -- 获取请求类型
local session = safeline.get_session() -- 获取会话信息
local details = safeline.get_detailed_info() -- 获取完整请求详情
2. Ticker 触发器开发
Ticker 触发器用于实现定时任务,即使在集群环境下也能保证定时准确性。
local interval = 60 -- 60秒间隔
function tick(duration)
-- 定时执行的任务
safeline.log("ticker", "定时任务执行,间隔:"..duration)
end
safeline.register(safeline.TYPE_TICKER, interval, tick)
3. Query 触发器开发
Query 触发器提供类 SQL 的流式分析能力,适合统计场景。
基本查询示例
local query = [[
SELECT ip, COUNT(*) as cnt
FROM access_log
GROUP BY TUMBLE_WINDOW(timestamp, 60), ip
HAVING cnt > 100
]]
function process(key, rows)
for row in rows do
safeline.log("高频IP", row.ip.." 访问次数:"..row.cnt)
end
end
safeline.register(safeline.TYPE_QUERY, query, process)
SQL 语法要点
- 支持标准 SELECT 语法
- 支持时间窗口函数:
TUMBLE_WINDOW
- 支持聚合函数:
COUNT
,SUM
- 数据源目前仅支持
access_log
核心 API 详解
1. 访问控制 API
-- 封禁IP
safeline.action_ban(safeline.ACTION_SCOPE_ALL, {ip="1.2.3.4"}, 3600)
-- 限频控制
safeline.action_limit(safeline.ACTION_SCOPE_URL,
{ip="1.2.3.4", url_path="/api"}, 3600, 60, 100)
2. KV 存储 API
-- 本地存储
safeline.db_set(safeline.DB_LOCAL, "key", "value")
local val = safeline.db_get(safeline.DB_LOCAL, "key")
-- 全局存储
safeline.db_add(safeline.DB_GLOBAL, "counter", 1)
3. HTTP 客户端 API
-- GET 请求
local resp, err = safeline.http_get("http://example.com/api", {
["X-Token"] = "abc123"
})
-- POST 请求
local resp, err = safeline.http_post("http://example.com/api", {
["Content-Type"] = "application/json"
}, '{"key":"value"}')
4. 日志记录 API
safeline.log("plugin_tag", "日志内容")
高级特性:异步处理
对于批量操作,使用 Promise 模式可显著提高性能:
-- 批量封禁IP的异步实现
for row in rows do
safeline.promise(function(ip)
return safeline.action_ban(..., {ip=ip}, ...)
end, row.ip)(function(err)
if err then
safeline.log("ban", "封禁失败:"..err)
end
end)()
end
最佳实践
- 正则表达式优化:使用
[[ ]]
语法避免转义 - 性能考虑:优先使用本地存储
DB_LOCAL
- 错误处理:检查 API 调用的返回值
- 日志分类:使用有意义的 tag 便于排查
完整示例
local safeline = require "safeline"
-- 高频访问检测
local query = [[
SELECT ip, COUNT(*) as cnt
FROM access_log
GROUP BY TUMBLE_WINDOW(timestamp, 60), ip
HAVING cnt > 500
]]
function process(key, rows)
for row in rows do
safeline.promise(function(ip)
return safeline.action_ban(
safeline.ACTION_SCOPE_ALL,
{ip = ip},
3600 -- 封禁1小时
)
end, row.ip)(function(err)
local msg = err and ("封禁失败:"..err) or "封禁成功"
safeline.log("auto_ban", row.ip..": "..msg)
end)()
end
end
safeline.register(safeline.TYPE_QUERY, query, process)
结语
SafeLine 20 的扩展插件系统提供了强大的自定义能力,通过本文的介绍,开发者可以快速掌握插件开发的核心技术。无论是简单的请求过滤,还是复杂的统计分析,都能通过 Lua 脚本灵活实现。建议从简单的 Match 触发器开始,逐步尝试更高级的 Query 和异步功能,构建出符合业务需求的安全防护方案。
登录后查看全文
热门项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
213
2.21 K

暂无简介
Dart
521
115

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
978
578

Ascend Extension for PyTorch
Python
64
94

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
552
86

React Native鸿蒙化仓库
JavaScript
209
285

openGauss kernel ~ openGauss is an open source relational database management system
C++
147
194

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399