SafeLine 20 扩展插件开发完全指南
2025-06-05 12:50:02作者:平淮齐Percy
前言
SafeLine 20 作为新一代 Web 应用防火墙,提供了强大的扩展插件系统,允许开发者通过 Lua 脚本实现自定义的安全防护逻辑。本文将全面介绍 SafeLine 20 扩展插件的开发方法,帮助开发者快速掌握插件开发的核心要点。
插件系统概述
SafeLine 20 扩展插件系统基于 Lua 5.1 标准,提供了丰富的 API 接口,支持三种主要类型的触发器:
- Match 触发器:基于请求特征进行匹配处理
- Ticker 触发器:实现定时任务功能
- Query 触发器:支持类 SQL 的流式统计分析
开发环境准备
在开始开发前,需要了解以下基本要求:
- Lua 5.1 语法兼容
- 受限的标准库访问(IO 库完全禁用,OS 库部分函数可用)
- 必须导入 safeline 模块
local safeline = require "safeline"
触发器类型详解
1. Match 触发器开发
Match 触发器是最常用的触发器类型,用于处理符合特定条件的 HTTP 请求。
基本结构
local match = {
ip = "192.168.1.0/24",
host = [[example\.com:80]],
url_path = [[/admin/.*]],
target = safeline.MATCH_TARGET_DETECT
}
function process(ip, host, url_path)
-- 处理逻辑
end
safeline.register(safeline.TYPE_MATCH, match, process)
匹配条件详解
字段 | 说明 | 示例 |
---|---|---|
ip | 支持 CIDR 格式 | "192.168.1.0/24" |
host | 正则表达式匹配 | [[.*.example.com:80]] |
url_path | 正则表达式匹配 | [[/admin/.*]] |
target | 请求类型过滤 | safeline.MATCH_TARGET_ALL |
请求上下文获取
在回调函数中可获取请求的详细信息:
local target = safeline.get_target() -- 获取请求类型
local session = safeline.get_session() -- 获取会话信息
local details = safeline.get_detailed_info() -- 获取完整请求详情
2. Ticker 触发器开发
Ticker 触发器用于实现定时任务,即使在集群环境下也能保证定时准确性。
local interval = 60 -- 60秒间隔
function tick(duration)
-- 定时执行的任务
safeline.log("ticker", "定时任务执行,间隔:"..duration)
end
safeline.register(safeline.TYPE_TICKER, interval, tick)
3. Query 触发器开发
Query 触发器提供类 SQL 的流式分析能力,适合统计场景。
基本查询示例
local query = [[
SELECT ip, COUNT(*) as cnt
FROM access_log
GROUP BY TUMBLE_WINDOW(timestamp, 60), ip
HAVING cnt > 100
]]
function process(key, rows)
for row in rows do
safeline.log("高频IP", row.ip.." 访问次数:"..row.cnt)
end
end
safeline.register(safeline.TYPE_QUERY, query, process)
SQL 语法要点
- 支持标准 SELECT 语法
- 支持时间窗口函数:
TUMBLE_WINDOW
- 支持聚合函数:
COUNT
,SUM
- 数据源目前仅支持
access_log
核心 API 详解
1. 访问控制 API
-- 封禁IP
safeline.action_ban(safeline.ACTION_SCOPE_ALL, {ip="1.2.3.4"}, 3600)
-- 限频控制
safeline.action_limit(safeline.ACTION_SCOPE_URL,
{ip="1.2.3.4", url_path="/api"}, 3600, 60, 100)
2. KV 存储 API
-- 本地存储
safeline.db_set(safeline.DB_LOCAL, "key", "value")
local val = safeline.db_get(safeline.DB_LOCAL, "key")
-- 全局存储
safeline.db_add(safeline.DB_GLOBAL, "counter", 1)
3. HTTP 客户端 API
-- GET 请求
local resp, err = safeline.http_get("http://example.com/api", {
["X-Token"] = "abc123"
})
-- POST 请求
local resp, err = safeline.http_post("http://example.com/api", {
["Content-Type"] = "application/json"
}, '{"key":"value"}')
4. 日志记录 API
safeline.log("plugin_tag", "日志内容")
高级特性:异步处理
对于批量操作,使用 Promise 模式可显著提高性能:
-- 批量封禁IP的异步实现
for row in rows do
safeline.promise(function(ip)
return safeline.action_ban(..., {ip=ip}, ...)
end, row.ip)(function(err)
if err then
safeline.log("ban", "封禁失败:"..err)
end
end)()
end
最佳实践
- 正则表达式优化:使用
[[ ]]
语法避免转义 - 性能考虑:优先使用本地存储
DB_LOCAL
- 错误处理:检查 API 调用的返回值
- 日志分类:使用有意义的 tag 便于排查
完整示例
local safeline = require "safeline"
-- 高频访问检测
local query = [[
SELECT ip, COUNT(*) as cnt
FROM access_log
GROUP BY TUMBLE_WINDOW(timestamp, 60), ip
HAVING cnt > 500
]]
function process(key, rows)
for row in rows do
safeline.promise(function(ip)
return safeline.action_ban(
safeline.ACTION_SCOPE_ALL,
{ip = ip},
3600 -- 封禁1小时
)
end, row.ip)(function(err)
local msg = err and ("封禁失败:"..err) or "封禁成功"
safeline.log("auto_ban", row.ip..": "..msg)
end)()
end
end
safeline.register(safeline.TYPE_QUERY, query, process)
结语
SafeLine 20 的扩展插件系统提供了强大的自定义能力,通过本文的介绍,开发者可以快速掌握插件开发的核心技术。无论是简单的请求过滤,还是复杂的统计分析,都能通过 Lua 脚本灵活实现。建议从简单的 Match 触发器开始,逐步尝试更高级的 Query 和异步功能,构建出符合业务需求的安全防护方案。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
861
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K