Great Tables项目中的CellStyle扩展:支持pandas.Series.case_when方法
在Great Tables项目中,表格样式处理是一个核心功能。最近随着pandas 2.2版本引入了Series.case_when方法,这为表格条件样式设置提供了新的可能性。本文将深入探讨如何扩展Great Tables的CellStyle类来原生支持这一特性。
背景与现状
Great Tables项目使用CellStyle类来处理表格单元格的样式设置。目前,该类已经支持通过Polars表达式(PlExpr)和可调用对象(callable)来动态设置样式属性。这种设计使得样式可以根据数据内容动态变化,非常灵活。
pandas 2.2引入的Series.case_when方法与Polars的when-then-otherwise语法类似,都提供了基于条件分支的向量化操作能力。这种语法糖使得条件样式设置更加直观和易读。
技术实现方案
要实现pandas.Series.case_when的支持,核心在于修改CellStyle类的_evaluate_expressions方法。当前该方法检查属性是否为Polars表达式或可调用对象:
if isinstance(attr, (PlExpr)) or callable(attr):
# 处理逻辑
改进方案是增加对pandas.Series(PdSeries)类型的支持:
if isinstance(attr, (PdSeries, PlExpr)) or callable(attr):
# 处理逻辑
实际应用示例
使用pandas.case_when设置温度列的背景色:
def get_temp_color(df_):
col = df_["Temp"]
caselist = [(col.gt(70), "lightyellow"), (~col.gt(70), "lightblue")]
return col.case_when(caselist)
gt_air.tab_style(
style=style.fill(color=get_temp_color),
locations=loc.body("Temp")
)
这种写法与Polars的when-then-otherwise语法相比,更加符合pandas用户的使用习惯,同时保持了相同的表达能力。
兼容性考虑
这种扩展保持了向后兼容性,因为:
- 原有基于Polars表达式的代码不受影响
- 可调用对象的支持仍然保留
- 只是新增了对pandas.Series类型的支持
测试用例也验证了这一修改的正确性:
def test_cell_value_from_pandas_series():
df = pd.DataFrame({"x": [1, 2]})
def get_color(df_):
col = df_["x"]
caselist = [(col.lt(2), "RED"), (~col.lt(2), "BLUE")]
return col.case_when(caselist)
style = CellStyleText(color=get_color)
new_style = style._evaluate_expressions(df)._from_row(df, 0)
assert new_style.color == "RED"
最佳实践建议
在实际项目中,可以根据团队的技术栈选择合适的条件样式设置方式:
- 对于已经使用Polars的项目,可以继续使用when-then-otherwise语法
- 对于pandas为主的项目,可以使用新支持的case_when方法
- 对于复杂逻辑,仍然可以使用可调用对象实现最大灵活性
这种多范式支持使得Great Tables能够适应不同用户群体的使用习惯,提高了项目的适用性。
总结
通过对CellStyle类的简单扩展,Great Tables项目现在可以原生支持pandas.Series.case_when方法,为pandas用户提供了更加熟悉的语法来设置条件样式。这一改进体现了项目对多数据处理生态系统的良好支持,同时也保持了API的一致性和扩展性。对于同时使用pandas和Polars的团队,这种灵活性将大大提升开发效率。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00