pgvectorscale 0.7.0 发布:支持过滤式近似最近邻搜索
pgvectorscale 是一个基于 PostgreSQL 的向量搜索扩展,它通过集成 DiskANN 算法提供了高效的近似最近邻(ANN)搜索能力。该项目由 Timescale 团队开发,旨在为 PostgreSQL 用户提供生产级的向量搜索解决方案。
过滤式 DiskANN 算法支持
本次 0.7.0 版本最重要的更新是引入了过滤式 DiskANN(Filtered DiskANN)算法支持。这一创新功能基于微软研究院发表的论文《Filtered DiskANN: Efficient Search in Large Scale Vector Databases with Boolean Constraints》。
过滤式 DiskANN 允许用户在向量搜索过程中加入布尔过滤条件,这在许多实际应用场景中非常有用。例如:
- 在电商推荐系统中,可以只搜索特定类别的商品
- 在内容检索中,可以限定只返回特定语言或特定发布日期的内容
- 在多租户系统中,可以确保用户只能看到自己有权限访问的数据
这种过滤能力是在索引层面实现的,而不是在查询后过滤,因此能够保持高效的搜索性能。算法会智能地跳过不符合过滤条件的向量,避免不必要的距离计算。
技术实现细节
为了实现过滤功能,项目团队对原有的 SbqNode 结构进行了抽象化改造,为支持带标签的变体做准备。这一底层改造使得索引能够存储和处理额外的元数据信息,为过滤条件提供支持。
在存储层面,0.7.0 版本还改进了页面槽位大小的计算方式,现在会考虑内存对齐因素,这有助于提升内存访问效率。
兼容性与构建改进
新版本继续保持对 PostgreSQL 13 到 17 版本的支持,并提供了针对 AMD64 和 ARM64 架构的预编译二进制包。构建系统方面,项目现在强制使用 LLVM 18 进行编译,确保了工具链的现代性和稳定性。
值得注意的是,项目已升级到 pgrx 0.12.9 框架,这是 Rust 语言编写 PostgreSQL 扩展的流行工具包。这一升级带来了更好的开发体验和运行时性能。
文档与使用说明
文档方面,0.7.0 版本澄清了几个重要内容:
- 明确了距离计算函数 distance_type_inner_product 现在是 CREATE OR REPLACE 语义
- 解释了近似最近邻搜索结果的排序可能不是严格精确的(relaxed ordering)
- 修正了从源代码安装的指导说明
对于开发者而言,新版本提供了更清晰的内部工作机制说明,特别是关于过滤条件如何与向量搜索协同工作的部分。
总结
pgvectorscale 0.7.0 通过引入过滤式 DiskANN 算法,显著扩展了向量搜索的应用场景,使开发者能够在保持高效搜索的同时加入业务逻辑约束。这一版本的技术改进和文档完善,使得该项目向生产就绪的目标又迈进了一步。对于需要在 PostgreSQL 中实现复杂向量搜索场景的团队来说,这个版本值得重点关注和评估。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C045
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0122
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00