Checklist 开源项目使用指南
2024-09-14 10:22:13作者:龚格成
项目介绍
Checklist 是一个用于测试和评估自然语言处理(NLP)模型的开源工具。它由 Marco Tulio Ribeiro 开发,旨在帮助研究人员和开发者系统地测试他们的模型,以确保其在各种边缘情况下的鲁棒性。Checklist 提供了一种基于任务的测试方法,允许用户定义测试用例,并通过这些用例来评估模型的性能。
项目快速启动
安装
首先,确保你已经安装了 Python 3.6 或更高版本。然后,你可以通过 pip 安装 Checklist:
pip install checklist
快速示例
以下是一个简单的示例,展示如何使用 Checklist 来测试一个文本分类模型。
from checklist.test_suite import TestSuite
from checklist.editor import Editor
from checklist.perturb import Perturb
# 创建一个测试套件
suite = TestSuite()
# 使用编辑器生成测试用例
editor = Editor()
test_cases = editor.template('This is a {pos_adj} example.', pos_adj=['good', 'great', 'excellent'])
# 添加测试用例到测试套件
suite.add('Positive adjectives', test_cases)
# 定义一个简单的分类模型
def classify(text):
return 'positive' if 'good' in text or 'great' in text or 'excellent' in text else 'negative'
# 运行测试
results = suite.run(classify)
# 打印测试结果
print(results)
应用案例和最佳实践
应用案例
Checklist 可以应用于多种 NLP 任务,包括但不限于:
- 文本分类:测试分类模型在不同文本输入下的表现。
- 命名实体识别(NER):评估模型在识别实体时的准确性和鲁棒性。
- 机器翻译:测试翻译模型在处理不同语言和语境时的表现。
最佳实践
- 多样化测试用例:确保测试用例覆盖尽可能多的边缘情况,以全面评估模型的鲁棒性。
- 自动化测试:将 Checklist 集成到持续集成(CI)流程中,以便在每次模型更新时自动运行测试。
- 结果分析:仔细分析测试结果,识别模型在哪些方面表现不佳,并针对性地进行改进。
典型生态项目
Checklist 作为一个测试工具,可以与其他 NLP 项目和工具结合使用,以提高模型的质量和鲁棒性。以下是一些典型的生态项目:
- Hugging Face Transformers:Checklist 可以与 Hugging Face 的 Transformers 库结合使用,测试预训练模型的性能。
- AllenNLP:Checklist 可以用于测试 AllenNLP 中的各种 NLP 模型。
- NLTK:Checklist 可以与 NLTK 结合,生成和测试文本数据的各种变体。
通过结合这些生态项目,Checklist 可以帮助开发者更全面地测试和改进他们的 NLP 模型。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
472
3.49 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
213
86
暂无简介
Dart
719
173
Ascend Extension for PyTorch
Python
278
314
React Native鸿蒙化仓库
JavaScript
286
333
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
432
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19