Drizzle ORM 中 snake_case 命名风格的配置问题解析
在使用 Drizzle ORM 进行数据库操作时,开发者经常会遇到命名风格不一致的问题。本文将深入分析 Drizzle ORM 和 Drizzle Kit 中 snake_case 命名风格的配置方式,帮助开发者避免常见的配置陷阱。
问题背景
Drizzle ORM 提供了灵活的命名风格配置选项,允许开发者在数据库列名和表名中使用不同的命名约定。然而,很多开发者在使用过程中发现,即使他们在 Drizzle 客户端配置了 casing: 'snake_case'
,生成的数据库列名仍然保持 camelCase 风格。
核心问题分析
这个问题实际上源于 Drizzle ORM 和 Drizzle Kit 是两个独立的工具,它们各自有自己的配置系统:
- Drizzle ORM 配置:控制运行时查询时的命名转换行为
- Drizzle Kit 配置:控制数据库迁移和代码生成时的命名风格
正确配置方式
要完全实现 snake_case 命名风格,需要在两个地方进行配置:
1. Drizzle 客户端配置
import { drizzle } from 'drizzle-orm/libsql';
const db = drizzle('file:local.sqlite', {
casing: 'snake_case', // 控制查询时的命名转换
schema: { usersTable }
});
2. Drizzle Kit 配置
import { defineConfig } from 'drizzle-kit';
export default defineConfig({
out: './drizzle',
schema: './schema.ts',
dialect: 'sqlite',
casing: 'snake_case', // 控制生成时的命名风格
dbCredentials: {
url: './local.sqlite',
},
});
常见误区
-
仅配置客户端:只配置 Drizzle 客户端的
casing
选项会导致生成时的列名仍然是 camelCase,而查询时却尝试使用 snake_case,造成列名不匹配错误。 -
配置位置混淆:有些开发者误以为 Drizzle Kit 的配置会继承 Drizzle ORM 的配置,实际上它们是独立的。
最佳实践
-
保持命名风格一致性:在项目初期就确定好命名风格,并在所有配置文件中统一使用。
-
测试验证:在配置完成后,应该通过实际生成和查询操作验证命名风格是否符合预期。
-
文档记录:在团队项目中,应该将命名风格配置写入项目文档,避免团队成员使用不一致的配置。
总结
Drizzle ORM 的命名风格配置需要同时在 ORM 客户端和 Kit 工具中进行设置才能完全生效。理解这两个配置的独立性和各自的作用范围,是避免命名风格问题的关键。通过本文的解析,希望开发者能够更好地掌握 Drizzle ORM 的命名风格配置方法,提高开发效率和代码质量。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









