AWS Deep Learning Containers发布PyTorch ARM64架构推理镜像v1.13
AWS Deep Learning Containers是亚马逊云科技提供的一组经过优化的深度学习容器镜像,它预装了流行的深度学习框架及其依赖项,使开发人员能够快速部署机器学习工作负载而无需手动配置环境。这些容器镜像针对AWS基础设施进行了性能优化,支持CPU和GPU加速,并提供了多种框架版本选择。
本次发布的v1.13版本主要针对ARM64架构的PyTorch推理场景,提供了基于Ubuntu 22.04操作系统、Python 3.11环境的PyTorch 2.5.1 CPU版本镜像。这个镜像特别适用于在AWS Graviton处理器上运行的机器学习推理服务,通过ARM架构的能效优势,可以显著降低推理成本。
镜像的核心组件包括PyTorch 2.5.1及其相关库torchaudio 2.5.1和torchvision 0.20.1,这些都是当前PyTorch生态系统中的稳定版本。此外,镜像还预装了torchserve 0.12.0和torch-model-archiver 0.12.0,这两个工具对于模型服务化部署至关重要,可以帮助开发者轻松地将训练好的模型打包并部署为可扩展的推理服务。
在数据处理和科学计算方面,镜像包含了NumPy 2.1.3、Pandas 2.2.3和SciPy 1.14.1等核心库,以及scikit-learn 1.5.2机器学习库。对于计算机视觉任务,预装了OpenCV 4.10.0.84和Pillow 11.0.0图像处理库。这些组件的组合覆盖了从数据预处理到模型推理的完整机器学习工作流。
值得注意的是,该镜像还包含了AWS CLI工具(awscli 1.36.7)和boto3 1.35.66 SDK,方便开发者与AWS服务进行交互。同时,为了支持模型开发和调试,镜像中还包含了Emacs编辑器及其相关组件。
从系统层面看,镜像基于Ubuntu 22.04 LTS构建,包含了GCC 11工具链和标准C++库,为PyTorch等框架提供了稳定的运行环境。这些系统组件的选择充分考虑了兼容性和性能需求,确保深度学习工作负载能够高效运行。
对于需要在ARM架构上部署PyTorch推理服务的用户,这个预配置的容器镜像可以大大简化环境搭建过程,减少兼容性问题,同时利用AWS Graviton处理器的优势实现成本优化。通过使用这些经过验证的容器镜像,团队可以更专注于模型开发和业务逻辑,而不是底层基础设施的维护。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00