在Vedo中连接两个分离网格边界的实用方法
2025-07-04 15:03:34作者:袁立春Spencer
引言
在3D建模和网格处理中,经常会遇到需要将两个分离的网格边界连接起来的情况。本文将以Vedo库为例,详细介绍几种实用的方法来实现这一目标,包括使用NetworkX重新排序点和使用三角形条带连接技术。
问题背景
当我们处理3D网格时,有时会得到两个分离的边界曲线。例如,一个原始边界和一个经过平滑处理并向下移动的边界。我们需要在这两个边界之间创建连接面,形成一个完整的3D结构。
方法一:使用NetworkX重新排序并连接
步骤1:重新排序边界点
首先,我们需要确保边界点是有序排列的。可以使用NetworkX库来实现这一点:
import networkx as nx
import vedo
def reorder_points(boundaries):
lines = boundaries.lines.copy()
vertices = boundaries.vertices.copy()
G = nx.DiGraph()
G.add_edges_from(lines)
traversal_path = list(nx.eulerian_circuit(G))
eulerian_nodes = [edge[0] for edge in traversal_path] + [traversal_path[-1][-1]]
new_pts = np.array([vertices[i] for i in eulerian_nodes])
new_boundary = vedo.Mesh([new_pts, [], [[i, i+1] for i in range(len(lines))]])
return new_boundary
步骤2:创建连接面
重新排序后,我们可以创建三角形面来连接两个边界:
def connect_lines_with_faces(b0, b1):
b0.add_ids()
b1.add_ids()
ids0 = b0.pointdata["PointID"]
ids1 = b1.pointdata["PointID"]
points = b0.coordinates.tolist() + b1.coordinates.tolist()
ids = ids0.tolist() + ids1.tolist()
n = b1.npoints
faces = []
for k in range(b0.npoints - 1):
i0 = ids[k]
i1 = ids[k + 1]
j0 = ids[k + n] + n
faces.append([i0, i1, j0])
j1 = ids[k + 1 + n] + n
faces.append([i1, j0, j1])
m = vedo.Mesh([points, faces], c="k6")
return m
这种方法通过创建两个三角形来连接每对相邻的点,确保连接面的连续性。
方法二:使用三角形条带技术
Vedo库最近添加了对三角形条带的支持,这为连接边界提供了更高效的解决方案:
def to_strips(b0, b1, closed=True):
b0 = b0.clone().join()
b1 = b1.clone().join()
vertices0 = b0.vertices.tolist()
vertices1 = b1.vertices.tolist()
lines0 = b0.lines
lines1 = b1.lines
m = len(lines0)
assert m == len(lines1)
strips = []
points = []
for j in range(m):
ids0j = list(lines0[j])
ids1j = list(lines1[j])
n = len(ids0j)
assert n == len(ids1j)
if closed:
ids0j.append(ids0j[0])
ids1j.append(ids1j[0])
vertices0.append(vertices0[ids0j[0]])
vertices1.append(vertices1[ids1j[0]])
n = n + 1
strip = [] # 创建三角形条带
npt = len(points)
for ipt in range(n):
points.append(vertices0[ids0j[ipt]])
points.append(vertices1[ids1j[ipt]])
strip = list(range(npt, npt+2*n))
strips.append(strip)
return vedo.Mesh([points, [], [], strips], c="k6")
这种方法的主要优势是:
- 不需要依赖NetworkX库
- 可以处理包含多条边界线的情况
- 性能更高,因为三角形条带减少了需要存储的顶点索引数量
实际应用示例
假设我们有一个原始边界和一个经过平滑并向下移动的边界:
b0 = vedo.Mesh("boundaries.vtk")
b1 = vedo.Mesh("boundaries_smoothed.vtk").shift(dz=10)
# 使用方法一
reordered_b0 = reorder_points(b0)
reordered_b1 = reorder_points(b1)
connected_mesh = connect_lines_with_faces(reordered_b0, reordered_b1)
# 或者使用方法二
connected_mesh = to_strips(b0, b1)
结论
本文介绍了在Vedo中连接两个分离网格边界的两种方法。第一种方法使用NetworkX重新排序点并创建三角形面,适合需要精确控制连接方式的场景。第二种方法利用Vedo新增的三角形条带支持,提供了更高效且支持多边界线的解决方案。
对于大多数应用场景,推荐使用三角形条带方法,它不仅性能更好,而且代码更简洁。但对于需要特殊连接方式或需要与现有代码兼容的情况,第一种方法仍然是一个可靠的选择。
无论选择哪种方法,都能有效地将两个分离的网格边界连接起来,为后续的3D建模和处理打下良好基础。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355