在Vedo中连接两个分离网格边界的实用方法
2025-07-04 10:06:53作者:袁立春Spencer
引言
在3D建模和网格处理中,经常会遇到需要将两个分离的网格边界连接起来的情况。本文将以Vedo库为例,详细介绍几种实用的方法来实现这一目标,包括使用NetworkX重新排序点和使用三角形条带连接技术。
问题背景
当我们处理3D网格时,有时会得到两个分离的边界曲线。例如,一个原始边界和一个经过平滑处理并向下移动的边界。我们需要在这两个边界之间创建连接面,形成一个完整的3D结构。
方法一:使用NetworkX重新排序并连接
步骤1:重新排序边界点
首先,我们需要确保边界点是有序排列的。可以使用NetworkX库来实现这一点:
import networkx as nx
import vedo
def reorder_points(boundaries):
lines = boundaries.lines.copy()
vertices = boundaries.vertices.copy()
G = nx.DiGraph()
G.add_edges_from(lines)
traversal_path = list(nx.eulerian_circuit(G))
eulerian_nodes = [edge[0] for edge in traversal_path] + [traversal_path[-1][-1]]
new_pts = np.array([vertices[i] for i in eulerian_nodes])
new_boundary = vedo.Mesh([new_pts, [], [[i, i+1] for i in range(len(lines))]])
return new_boundary
步骤2:创建连接面
重新排序后,我们可以创建三角形面来连接两个边界:
def connect_lines_with_faces(b0, b1):
b0.add_ids()
b1.add_ids()
ids0 = b0.pointdata["PointID"]
ids1 = b1.pointdata["PointID"]
points = b0.coordinates.tolist() + b1.coordinates.tolist()
ids = ids0.tolist() + ids1.tolist()
n = b1.npoints
faces = []
for k in range(b0.npoints - 1):
i0 = ids[k]
i1 = ids[k + 1]
j0 = ids[k + n] + n
faces.append([i0, i1, j0])
j1 = ids[k + 1 + n] + n
faces.append([i1, j0, j1])
m = vedo.Mesh([points, faces], c="k6")
return m
这种方法通过创建两个三角形来连接每对相邻的点,确保连接面的连续性。
方法二:使用三角形条带技术
Vedo库最近添加了对三角形条带的支持,这为连接边界提供了更高效的解决方案:
def to_strips(b0, b1, closed=True):
b0 = b0.clone().join()
b1 = b1.clone().join()
vertices0 = b0.vertices.tolist()
vertices1 = b1.vertices.tolist()
lines0 = b0.lines
lines1 = b1.lines
m = len(lines0)
assert m == len(lines1)
strips = []
points = []
for j in range(m):
ids0j = list(lines0[j])
ids1j = list(lines1[j])
n = len(ids0j)
assert n == len(ids1j)
if closed:
ids0j.append(ids0j[0])
ids1j.append(ids1j[0])
vertices0.append(vertices0[ids0j[0]])
vertices1.append(vertices1[ids1j[0]])
n = n + 1
strip = [] # 创建三角形条带
npt = len(points)
for ipt in range(n):
points.append(vertices0[ids0j[ipt]])
points.append(vertices1[ids1j[ipt]])
strip = list(range(npt, npt+2*n))
strips.append(strip)
return vedo.Mesh([points, [], [], strips], c="k6")
这种方法的主要优势是:
- 不需要依赖NetworkX库
- 可以处理包含多条边界线的情况
- 性能更高,因为三角形条带减少了需要存储的顶点索引数量
实际应用示例
假设我们有一个原始边界和一个经过平滑并向下移动的边界:
b0 = vedo.Mesh("boundaries.vtk")
b1 = vedo.Mesh("boundaries_smoothed.vtk").shift(dz=10)
# 使用方法一
reordered_b0 = reorder_points(b0)
reordered_b1 = reorder_points(b1)
connected_mesh = connect_lines_with_faces(reordered_b0, reordered_b1)
# 或者使用方法二
connected_mesh = to_strips(b0, b1)
结论
本文介绍了在Vedo中连接两个分离网格边界的两种方法。第一种方法使用NetworkX重新排序点并创建三角形面,适合需要精确控制连接方式的场景。第二种方法利用Vedo新增的三角形条带支持,提供了更高效且支持多边界线的解决方案。
对于大多数应用场景,推荐使用三角形条带方法,它不仅性能更好,而且代码更简洁。但对于需要特殊连接方式或需要与现有代码兼容的情况,第一种方法仍然是一个可靠的选择。
无论选择哪种方法,都能有效地将两个分离的网格边界连接起来,为后续的3D建模和处理打下良好基础。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~045CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0301- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
176
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
863
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K